Skip to main content
Log in

The Coexistence of Orthogonal Current Structures and the Development of Different-Type Weibel Instabilities in Adjacent Regions of a Plasma Transition Layer with a Hot Electron Flow

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

By means of particle-in-cell numerical simulations, we find the possibility of the formation and long-term coexistence of orthogonal current structures in adjacent layers of an inhomogeneous cold plasma penetrated by a hot electron flow. The formationof these structures is shown to occur in a wide range of parameters specifying collisionless expansion of high-energy electrons out of a dense plasma into a rarefied plasma. These structures originate due to the development of Weibel instabilities of two different types that are associated with qualitatively different anisotropic electron velocity distributions. Experiments with a laser plasma produced in the course of target ablation by means of quasi-cylindrical focusing of a high-power femtosecond-laser radiation beam are proposed in order to observe the predicted phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Notes

  1. At an increase in the ion mass to actual values of M > 1836m, as shown by estimates for the posed problem and numerical simulation for the physically close problem of expansion of plasma with hot electrons into an external magnetic field (Garasev et al., 2022), the nature of the current structures and the dynamics of electron processes on picosecond times do not change qualitatively, but their rate only slows down, and the deformation rate of the profile of the total plasma density that is determined by the ion-acoustic velocity of ~ (T/M)1/2 decreases.

REFERENCES

  1. Albertazzi, B., Ciardi, A., Nakatsutsumi, M., et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science, 2014, vol. 346, pp. 325–328. https://doi.org/10.1126/science.1259694

    Article  Google Scholar 

  2. Albertazzi, B., Chen, S.N., Antici, P., et al., Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation, Phys. Plasmas, 2015, vol. 22, no. 12, p. 123108. https://doi.org/10.1063/1.4936095

    Article  Google Scholar 

  3. Andreev, N.E., Veisman, M.E., Efremov, V.P., and Fortov, V.E., The generation of a dense hot plasma by intense subpicosecond laser pulses, High Temp., 2003, vol. 41, pp. 594–608. https://doi.org/10.1023/A:1026184309635

    Article  Google Scholar 

  4. Arber, T.D., Bennett, K., Brady, C.S., et al., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Controlled Fusion, 2015, vol. 57, p. 113001. https://doi.org/10.1088/0741-3335/57/11/113001

    Article  Google Scholar 

  5. Artsimovich, L.A. and Sagdeev, R.Z., Fizika plazmy dlya fizikov (Plasma Physics for Physicists), Moscow: Atomizdat, 1979.

  6. Borghesi, M., Mackinnon, A.J., Bell, A.R., Gaillard, R., and Willi, O., Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultraintense picosecond laser pulse, Phys. Rev. Lett., 1998, vol. 81, p. 112. https://doi.org/10.1103/PhysRevLett.81.112

    Article  Google Scholar 

  7. Borodachev, L.V., Garasev, M.A., Kolomiets, D.O., Kocharovskii, V.V., Martyanov, V.Yu., and Nechaev, A.A., Dynamics of a self-consistent magnetic field and diffusive scattering of ions in a plasma with strong thermal anisotropy, Radiophys. Quantum Electron., 2017, vol. 59, no. 12, pp. 991–999.

    Article  Google Scholar 

  8. Chatterjee, G., Singh, P.K., Robinson, A.P.L., et al., Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions, Sci. Rep., 2017, vol. 7, p. 8347. https://doi.org/10.1038/s41598-017-08619-1

    Article  Google Scholar 

  9. DeForest, S.E., Howard, R.A., Velli, M., Viall, N., and Vourlidas, A., The highly structured outer solar corona, Astrophys. J., 2018, vol. 862, p. 18. https://doi.org/10.3847/1538-4357/aac8e3

    Article  Google Scholar 

  10. Dieckmann, M.E., The filamentation instability driven by warm electron beams: statistics and electric field generation, Plasma Phys. Controlled Fusion, 2009, vol. 51, p. 124042. https://doi.org/10.1088/0741-3335/51/12/124042

    Article  Google Scholar 

  11. Drake, R.P., High-Energy-Density Physics: Fundamentals, Inertial Fusion and Experimental Astrophysics, Berlin: Springer, 2006. https://doi.org/10.1007/3-540-29315-9.

  12. Dudík, J., Dzifčáková, E., Meyer-Vernet, N., et al., Nonequilibrium processes in the solar corona, transition region, flares, and solar wind (invited review), Sol. Phys., 2017, vol. 292, p. 100. https://doi.org/10.1007/s11207-017-1125-0

    Article  Google Scholar 

  13. Forestier-Colleoni, P., Batani, D., Burgy, F., et al., Space and time resolved measurement of surface magnetic field in high intensity short pulse laser matter interactions, Phys. Plasmas, 2019, vol. 26, p. 072701. https://doi.org/10.1063/1.5086725

    Article  Google Scholar 

  14. Fox, W., Matteucci, J., Moissard, C., Schaeffer, D.B., Bhattacharjee, A., Germaschewski, K., and Hu, S.X., Kinetic simulation of magnetic field generation and collisionless shock formation in expanding laboratory plasmas, Phys. Plasmas, 2018, vol. 25, p. 102106. https://doi.org/10.1063/1.5050813

    Article  Google Scholar 

  15. Garasev, M. and Derishev, E., Impact of continuous particle injection on generation and decay of the magnetic field in collisionless shocks, Mon. Not. R. Astron. Soc., 2016, vol. 461, pp. 641–646.

    Article  Google Scholar 

  16. Garasev, M.A., Nechaev, A.A., Stepanov, A.N., Kocharovskii, V.V., and Kocharovskii, Vl.V., Weibel instability and deformation of an external magnetic field in the region of decay of a strong discontinuity in a plasma with hot electrons, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 3, pp. 182–198. https://doi.org/10.1134/S0016793222030094

  17. Huntington, C.M., Finza, F., Ross, J.S., et al., Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows, Nat. Phys., 2015, vol. 11, pp. 173–176.

    Article  Google Scholar 

  18. Kocharovsky, V.V., Kocharovsky, Vl.V., Martyanov, V.Yu., and Tarasov, S.V., Analytical theory of self-consistent current structures in a collisionless plasma, Phys.-Usp., 2016, vol. 59, no. 12, pp. 1165–1210.

    Article  Google Scholar 

  19. Langdon, A.B., Nonlinear inverse bremsstrahlung and heated-electron distributions, Phys. Rev. Lett., 1980, vol. 44, pp. 575–579. https://doi.org/10.1103/PhysRevLett.44.575

    Article  Google Scholar 

  20. Lazar, M., López, R., Shaaban, S.M., Poedts, S., Yoon, P.H., and Fichtner, H., Temperature anisotropy instabilities stimulated by the solar wind suprathermal populations, Front. Astron. Space Sci., 2022, vol. 8, p. 777559. https://doi.org/10.3389/fspas.2021.777559

    Article  Google Scholar 

  21. Lyubarsky, Y. and Eichler, D., Are gamma-ray burst shocks mediated by the Weibel instability?, Astrophys. J., 2006, vol. 647, pp. 1250–1254.

    Article  Google Scholar 

  22. Marsch, E., Kinetic physics of the solar corona and solar wind, Living Rev. Sol. Phys., 2006, vol. 3, p. 1. https://doi.org/10.12942/lrsp-2006-1

    Article  Google Scholar 

  23. Moreno, Q., Aruado, A., Korneev, Ph., Li, C.K., Tikhonchuk, V.T., Ribeyre, X., d’Humières, E., and Weber, S., Shocks and phase space vortices driven by a density jump between two clouds of electrons and protons, Phys. Plasmas, 2020, vol. 27, p. 122106. https://doi.org/10.1088/1361-6587/ab5bfb

    Article  Google Scholar 

  24. Nakamura, R., Varsani, A., Genestreti, K.J., et al., Multiscale currents observed by mms in the flow braking region, J. Geophys. Res.: Space Phys., 2018, vol. 123, pp. 1260–1278. https://doi.org/10.1002/2017JA024686

    Article  Google Scholar 

  25. Nechaev, A.A., Garasev, M.A., Kocharovsky, V.V., and Kocharovsky, Vl.V., Weibel mechanism of magnetic-field generation in the process of expansion of a collisionless-plasma bunch with hot electrons, Radiophys. Quantum Electron., 2020a, vol. 62, no. 12, pp. 830–848.

    Article  Google Scholar 

  26. Nechaev, A.A., Garasev, M.A., Stepanov, A.N., and Kocharovsky, Vl.V., Formation of a density bump in a collisionless electrostatic shock wave during expansion of a hot dense plasma into a cold rarefied one, Plasma Phys. Rep., 2020b, vol. 46, no. 8, pp. 765–783.

    Article  Google Scholar 

  27. Ngirmang, G.K., Morrison, J.T., George, K.M., Smith, J.R., Frische, K.D., Orban, C., Chowdhury, E.A., and Mel Roquemore, W., Evidence of radial Weibel instability in relativistic intensity laser-plasma interactions inside a sub-micron thick liquid target, Sci. Rep., 2020, vol. 10, p. 9872. https://doi.org/10.1038/s41598-020-66615-4

    Article  Google Scholar 

  28. Peterson, J.R., Glenzer, S., and Fiuza, F., Magnetic field amplification by a nonlinear electron streaming instability, Phys. Rev. Lett., 2021, vol. 126, p. 215101. https://doi.org/10.1103/PhysRevLett.126.215101

    Article  Google Scholar 

  29. Plechaty, C., Presura, R., Wright, S., Neff, S., and Haboub, A., Penetration of plasma across a magnetic field, Astrophys. Space Sci., 2009, vol. 322, pp. 195–199. https://doi.org/10.1007/s10509-009-9997-6

    Article  Google Scholar 

  30. Quinn, K., Romagnani, L., Ramakrishna, B., et al., Weibel-induced filamentation during an ultrafast laser-driven plasma expansion, Phys. Rev. Lett., 2012, vol. 108, no. 13, p. 135001. https://doi.org/10.1103/PhysRevLett.108.135001

    Article  Google Scholar 

  31. Shaikh, M., Lad, A.D., Jana, K., Sarkar, D., Dey, I., and Ravindra Kumar, G., Megagauss magnetic fields in ultra-intense laser generated dense plasmas, Plasma Phys. Controlled Fusion, 2017, vol. 59, p. 014007. https://doi.org/10.1088/0741-3335/59/1/014007

    Article  Google Scholar 

  32. Shukla, N., Schoeffler, K., Boella, E., Vieira, J., Fonseca, R., and Silva, L.O., Interplay between the Weibel instability and the Biermann battery in realistic laser-solid interactions, Phys. Rev. Res., 2020, vol. 2, no. 2, p. 023129. https://doi.org/10.1103/physrevresearch.2.023129

    Article  Google Scholar 

  33. Soloviev, A.A., Burdonov, K.F., Kotov, A.V., et al., Experimental study of the interaction of a laser plasma flow with a transverse magnetic field, Radiophys. Quantum Electron., 2021, vol. 63, no. 11, pp. 876–886. https://doi.org/10.1007/s11141-021-10101-y

    Article  Google Scholar 

  34. Stamper, J.A., Review on spontaneous magnetic fields in laser-produced plasmas: Phenomena and measurements, Laser Part. Beams, 1991, vol. 9, pp. 841–862. https://doi.org/10.1017/S0263034600006595

    Article  Google Scholar 

  35. Stepanov, A.N., Garasev, M.A., Kocharovsky, V.V., Korytin, A.I., Mal’kov, Yu.A., Murzanev, A.A., and Nechaev, A.A., Generation of magnetic fields behind the front of an electrostatic shock wave in a laser plasma, in Proc. Int. Conf. Laser Optics (ICLO 2018), St. Petersburg: IEEE, 2018, p. 242. https://doi.org/10.1109/LO.2018.8435840.

  36. Stepanov, A.N., Garasev, M.A., Kocharovsky, Vl.V., Korytin, A.I., Murzanev, A.A., Nechaev, A.A., Kartashov, D.V., and Samsonova, Z.A., Investigation of the instabilities of an expanding plasma created during ablation of solid targets by intense femtosecond laser pulses, in Proc. Int. Conf. Laser Optics (ICLO 2020), St. Petersburg: IEEE, 2020, p. 213. https://doi.org/10.1109/ICLO48556.2020.9285395.

  37. Stepanov, A.V. and Zaitsev, V.V., Magnitosfery aktivnykh oblastei Solntsa i zvezd (Magnetospheres of Active Regions of the Sun and Stars), Moscow: Fizmatlit, 2018.

  38. Thaury, C., Mora, P., Heron, A., and Adam, J.C., Self-generation of megagauss magnetic fields during the expansion of a plasma, Phys. Rev. E, 2010, vol. 82, no. 1, p. 016408. https://doi.org/10.1103/physreve.82.016408

    Article  Google Scholar 

  39. Vörös, Z., Yordanova, E., Varsani, A., et al., MMS observation of magnetic reconnection in the turbulent magnetosheath, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 11 442–11 467. https://doi.org/10.1002/2017JA024535

  40. Weibel, E.S., Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution, Phys. Rev. Lett., 1959, vol. 2, pp. 83–84.

    Article  Google Scholar 

  41. Yoon, P.H., Kinetic instabilities in the solar wind driven by temperature anisotropies, Rev. Mod. Plasma Phys., 2017, vol. 1, p. 4. https://doi.org/10.1007/s41614-017-0006-1

    Article  Google Scholar 

  42. Zhou, S., Bai, Y., Tian, Y., Sun, H., Cao, L., and Liu, J., Self-organized kilotesla magnetic-tube array in an expanding spherical plasma irradiated by kHz femtosecond laser pulses, Phys. Rev. Lett., 2018, vol. 121, p. 255002. https://doi.org/10.1103/PhysRevLett.121.255002

    Article  Google Scholar 

Download references

Funding

Modeling of the formation and rearrangement of current sheets and filaments in the cold plasma transition layer in the presence of hot electron injection (Sections 2 and 3) was supported by the Russian Foundation for Basic Research, project no. 18-29-21029. Numerical calculations were performed using computing resources provided by the Joint Supercomputer Center of the Russian Academy of Sciences. Interpretation, analytical evaluations, and qualitative analysis of the obtained results (Sections 1, 4, and 5) were supported by the “BASIS” Foundation, grant no. 20-1-1-37-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vl. V. Kocharovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garasev, M.A., Kocharovsky, V.V., Nechaev, A.A. et al. The Coexistence of Orthogonal Current Structures and the Development of Different-Type Weibel Instabilities in Adjacent Regions of a Plasma Transition Layer with a Hot Electron Flow. Geomagn. Aeron. 62 (Suppl 1), S10–S24 (2022). https://doi.org/10.1134/S0016793222600436

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222600436

Navigation