Skip to main content
Log in

Response of the Asian-Australian Low Latitude TEC to the 2013 SSW Event and a Moderate Geomagnetic Storm

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In this study, the Total Electron Content (TEC) variability over Asian-Australian low-latitude sector is investigated during the 2013 Sudden Stratospheric Warming (SSW) event that overlapped with a moderate geomagnetic storm. These investigations are about the latitudinal distribution of ionospheric TEC measured from 10 Global Positioning System (GPS) receivers along 115° E in the Asian-Australian sector. We used a pair of magnetometers to reveal the equatorial electrojet (EEJ) strength equivalent to the magnetometer-inferred \(E \times B\) drift. Also, the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite airglow instrument was used to unveil the changes in the neutral thermospheric \({{\text{O}} \mathord{\left/ {\vphantom {{\text{O}} {{{{\text{N}}}_{2}}}}} \right. \kern-0em} {{{{\text{N}}}_{2}}}}\) ratio during the event. The current work was compared with a similar investigation in the American sector. During SSW onset (7 January 2013), the northern EIA crest that moved poleward in the Asian-Australian sector contradicted the equatorward movement of the crest observed in the American sector. At both the Asian-Australian and American longitudes in mid-January, the poleward northern crests are at higher latitudes in the American longitude than in the Asian-Australian longitude. This longitudinal difference in mid-January was evident in significant enhancement of the magnetometer inferred upward-directed \(E \times B\) drift in the American sector compared to the Asian-Australian sector. Compared to the American sector, the moderate geomagnetic storm that overlapped the ongoing major SSW on 17 January 2013 did not significantly affect the Asian-Australian sector. The storm-time effect on the TEC on 18 January 2013 in the Asian-Australian sector reduced (increased) the SSW (photo-ionization) effect in the northern (southern) hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.
Fig. 7.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Anderson, D. N. and Roble, R. G., Neutral wind effects on the equatorial F-region ionosphere, J. Atmos. Terr. Phys., 1981, vol. 43, no. 8, pp. 835–843. https://doi.org/10.1016/0021-9169(81)90061-1

    Article  Google Scholar 

  2. Andrews, D.G., Holton, J.R., and Leovy, C., Middle Atmospheric Dynamics, London: Academic Press, 1987, pp. 250–294.

    Google Scholar 

  3. Astafyeva, E., Zakharenkova, I., and Forster, M., Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 9023–9037. https://doi.org/10.1002/2015JA021629

    Article  Google Scholar 

  4. Balan, N., Thampi, S., Lynn, K., Otsuka, Y., Alleyne, H., Watanabe, S., Abdu, M.A., and Fejer, B.G., F3 layer during penetration electric field, J. Geophys. Res., 2008, vol. 113, A00A07. https://doi.org/10.1029/2008JA013206

    Article  Google Scholar 

  5. Balan, N., Shiokawa, K., Otsuka, Y., Watanabe, S., and Bailey, G.J., Super plasma fountain and equatorial ionization anomaly during penetration electric field, J. Geophys. Res., 2009, vol. 114, A03310. https://doi.org/10.1029/2008JA013768

    Article  Google Scholar 

  6. Balan, N., Yamamoto, M., Liu, J. Y., Otsuka, Y., Liu, H., and Lühr, H., New aspects of thermospheric and ionospheric storms revealed by CHAMP, J. Geophys. Res., 2011, vol. 116, A07305. https://doi.org/10.1029/2010JA016399

    Article  Google Scholar 

  7. Blanc, M. and Richmond, A.D., The ionospheric disturbance dynamo, J. Geophys. Res., 1980, vol. 85, pp. 1669–1686. https://doi.org/10.1029/JA085iA04p01669

    Article  Google Scholar 

  8. Bolaji, O.S., Adeniyi, J.O., Radicella, S.M., and Doherty, P.H., Variability of total electron content over an equatorial West African station during low solar activity, Radio Sci., 2012, vol. 47, RS1001. https://doi.org/10.1029/2011RS004812

    Article  Google Scholar 

  9. Bolaji, O.S., Owolabi, O.P., Falayi, E., Jimoh, E., Kotoye, A., Odeyemi, O., et al., Solar quiet current response in the African sector due to a 2009 sudden stratospheric warming event, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 8055–8065. https://doi.org/10.1002/2016JA022857

    Article  Google Scholar 

  10. Bolaji, O.S., Fashae, J.B., Adebiyi, S.J., Owolabi, C., Adebesin, B.O., and Kaka, R.O., Storm time effects on latitudinal distribution of ionospheric TEC in the American and Asian–Australian sectors: August 25–26, 2018 geomagnetic storm, J. Geophys. Res.: Space Phys., 2021, vol. 126, e2020JA029068. https://doi.org/10.1029/2020JA029068.

  11. Chandran, A., Collins, R.L., and Harvey, V.L, Stratosphere–mesosphere coupling during stratospheric sudden warming events, Adv. Space Res., 2014, vol. 53, pp. 1265–1289. https://doi.org/10.1016/j.asr.2014.02.005

    Article  Google Scholar 

  12. Charlton, A.J. and Polvani, L.M., A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks, J. Clim., 2007, vol. 20, pp. 449–469.

    Article  Google Scholar 

  13. Chau, J.L., Fejer, B.G., and Goncharenko, L.P., Quiet variability of equatorial e × B drifts during a sudden stratospheric warming event, Geophys. Res. Lett., 2009, vol. 36, no. 5, pp. 1–4. https://doi.org/10.1029/2008GL036785

    Article  Google Scholar 

  14. Chau, J. L., Goncharenko, L. P., Fejer, B. G., and Liu, H.-L., Equatorial and low latitude ionospheric effects during sudden stratospheric warming events: Ionospheric effects during SSW events, Space Sci. Rev., 2011, vol. 168, pp. 385–417. https://doi.org/10.1007/s11214-011-9797-5

    Article  Google Scholar 

  15. Chen, G., Li, Y., Zhang, Sh., Ning, B., Gong, W., Yoshikawa, A., Hozumi, K., Tsugawa, T., and Wang, Zh., Multi-instrument observations of the atmospheric and ionospheric response to the 2013 sudden stratospheric warming over eastern Asia region, IEEE Trans. Geosci. Remote Sens., 2020, vol. 58, no. 2, pp. 1232–1243. https://doi.org/10.1109/TGRS.2019.2944677

    Article  Google Scholar 

  16. De Paula, E.R., Jonah, O.F., Moraes, A.O., Kherani, E.A., Fejer, B.G., Abdu, M.A., Muella, M.T.A.H., Batista, I.S., Dutra, S.L.G., and Paes, R.R., Low-latitude scintillation weakening during sudden stratospheric warming events, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 2212–2221. https://doi.otg/10.1002/2014JA020731.

    Article  Google Scholar 

  17. De Jesus, R., Batista, I.S., Jonah, O.F., de Abreu, A.J., Fagundes, P.R., Venkatesh, K., and Denardini, C.M., An investigation of the ionospheric disturbances due to the 2014 sudden stratospheric warming events over Brazilian sector, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 11, pp. 11 698–11 715. https://doi.org/10.1002/2017ja024560

    Article  Google Scholar 

  18. Dunkerton T. and Butchart, N., Propagation and selective transmission of internal gravity waves in a sudden warming, J. Atmos. Sci., 1984, vol. 41, no. 8, pp. 1443–1460. https://doi.org/10.1175/1520-0469(1984)041<1443:PASTOI>2.0.CO;2

    Article  Google Scholar 

  19. Eastwood, J.P., Biffis, E., Hapgood, M.A., Green, L., Bisi, M.M., Bentley, R.D., et al., The economic impact of space weather: Where do we stand?, Risk Anal., 2017, vol. 37, no. 2, pp. 206–218. https://doi.org/10.1111/risa.12765

    Article  Google Scholar 

  20. Fagundes, P.R., Cardoso, F.A., Fejer, B.G., Venkatesh, L., Ribeiro, B.A.G., Pillat, V.G., Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 6, pp. 5613–5625. https://doi.org/10.1002/2015JA022214

    Article  Google Scholar 

  21. Fashae, J.B., Bolaji, O.S., and Rabiu, A.B., Response of the ionospheric TEC to SSW and associated geomagnetic storm over the American low latitudinal sector, Space Weather, 2022, vol. 20, e2021SW002999. https://doi.org/10.1029/2021SW002999

  22. Fejer, B.G., Olson, M.E., Chau, J.L., Stolle, C., Lühr, H., Goncharenko, L.P., Yumoto, K., and Nagatsuma, T, Lunar-dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings, J. Geophys. Res.: Space Phys., 2010, vol. 115, no. 8, pp. 1–9. https://doi.org/10.1029/2010JA015273

    Article  Google Scholar 

  23. Fejer, B.G., Tracy, B.D., Olson, M.E., and Chau, J.L., Enhanced lunar semidiurnal equatorial vertical plasma drifts during sudden stratospheric warmings, Geophys. Res. Lett., 2011, vol. 38, no. 21, pp. 2–6. https://doi.org/10.1029/2011GL049788

    Article  Google Scholar 

  24. Fuller-Rowell, T.J., Codrescu, M.V., Moffett, R.J., and Quegan, S., Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 1994, vol. 99, no. A3, 3893. https://doi.org/10.1029/93JA02015

    Article  Google Scholar 

  25. Fuller-Rowell, T.J., Codrescu, M.V., Rishbeth, H., Moffett, R.J., and Quegan, S., On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 1996, vol. 101, pp. 2343–2353. https://doi.org/10.1029/95JA01614

    Article  Google Scholar 

  26. Fuller-Rowell, T., Wang, H., Akmaev, R., Wu, F., Fang, T.-W., Iredell, M., and Richmond, A., Forecasting the dynamic and electrodynamic response to the January 2009 sudden stratospheric warming, 2011, vol. 38, no. 13. https://doi.org/10.1029/2011gl047732

  27. Goncharenko, L.P., Chau, J.L., Liu, H.-L., and Coster, A.J., Unexpected connections between stratosphere and ionosphere, Geophys. Res. Lett., 2010a, vol. 37, L10101. https://doi.org/10.1029/2010GRL043125

    Article  Google Scholar 

  28. Goncharenko, L.P., Coster, A.J., Chau, J.L., and Valladares, C.E., Impact of sudden stratospheric warmings on equatorial ionization anomaly, J. Geophys. Res., 2010b, vol. 115, A00G07. https://doi.org/10.1029/2010JA015400

    Article  Google Scholar 

  29. Goncharenko, L., Chau, J.L., Condor, P., Coster, A., and Benkevitch, L., Ionospheric effects of sudden stratospheric warming during moderate-to-high solar activity: Case study of January 2013, Geophys. Res. Lett., 2013, vol. 40, no. 19, pp. 4982–4986. https://doi.org/10.1002/grl.50980

    Article  Google Scholar 

  30. Gonzales, C.A., Kelley, M.C., Fejer, B.G., Vickrey, J.F., and Woodman, R.F., Equatorial electric fields during magnetically disturbed conditions: 2. Implications of simultaneous auroral and equatorial measurements, J. Geophys. Res., 1979, vol. 84, pp. 5803–5812. https://doi.org/10.1029/JA084iA10p05803

    Article  Google Scholar 

  31. Jonah, O.F., De Paula, E.R., Kherani, E.A., Dutra, S.L.G., and Paes, R.R., Atmospheric and ionospheric response to sudden stratospheric warming of January 2013, J. Geophys. Res.: Space Phys., 2014, vol. 119, vol. 4973–4980. https://doi.org/10.1002/2013JA019491

  32. Kakoti, G., Kalita, B.R., Bhuyan, P.K., Baruah, S., and Wang, K., Longitudinal and interhemispheric ionospheric response to 2009 and 2013 SSW events in the African–European and Indian–East Asian sectors, J. Geophys. Res.: Space Phys., 2020, vol. 125, no. 11. https://doi.org/10.1029/2020JA028570

  33. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al., The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 1996, vol. 77, no. 3, pp. 437–471. https://doi.org/10.1175/1520-0477

    Article  Google Scholar 

  34. Korenkov, Y.N., Klimenko, V.V., Klimenko, M.V., et al., The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event, J. Geophys. Res.: Space Phys., 2012, vol. 117, A10309. https://doi.org/10.1029/2012JA018018

    Article  Google Scholar 

  35. Laskar, F.I., Pallamraju, D., and Veenadhari, B., Vertical coupling of atmospheres: dependence on strength of sudden stratospheric warming and solar activity, Earth Planets Space, 2014, vol. 66, p. 94. https://doi.org/10.1186/1880-5981-66-94

    Article  Google Scholar 

  36. Liu, H.-L., and Richmond, A.D., Attribution of ionospheric vertical plasma drift perturbations to large-scale waves and the dependence on solar activity, J. Geophys. Res.: Space Phys., 2013, vol. 118, no. 5, pp. 2452–2465. https://doi.org/10.1002/jgra.50265

    Article  Google Scholar 

  37. Liu, H.-L., and Roble, R.G., A study of a self-generated stratospheric sudden warming and its mesospheric–lower thermospheric impacts using the coupled TIME-GCM/CCM3, J. Geophys. Res., 2002, vol. 107, no. D23, pp. ACL 15-1–ACL 15-18. https://doi.org/10.1029/2001jd001533

  38. Lu, G., Goncharenko, L., Richmond, A.D., Roble, R.G., and Aponte, N.A., Dayside ionospheric positive storm phase driven by neutral winds, J. Geophys. Res., 2008, vol. 113, no. A8.

  39. Matsuno, T., A dynamical model of the stratospheric sudden warming, J. Atmos. Sci., 1971, vol. 28, no. 8. https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2

  40. Meyer, C.K., Gravity wave interactions with the diurnal propagating tide, J. Geophys. Res., 1999, vol. 104, no. D4, pp. 4223–4239.

    Article  Google Scholar 

  41. Na, L., Luan, X., Lei, J., Bolaji, O.S., Owolabi, Ch., Chen, J., Xu, Zh., Li, G., and Ning, B., Variations of mesospheric neutral winds and tides observed by a meteor radar chain over China during the 2013 sudden stratospheric warming, J. Geophys. Res.: Space Phys., 2020, vol. 125, no. 5, 2019JA027443. https://doi.org/10.1029/2019JA027443

  42. Oyama, K.I., Jhou, J.T., Lin, J.T., Lin, C., Liu, H., and Yumoto, K., Ionospheric response to 2009 sudden stratospheric warming in the Northern Hemisphere, J. Geophys. Res.: Space Phys., 2014, vol. 119, no. 12, pp. 10260–10275.

    Google Scholar 

  43. Pedatella, N.M. and Forbes, J.M., Evidence for stratosphere sudden warming-ionosphere coupling due to vertically propagating tides, Geophys. Res. Lett., 2010, vol. 37, L11104. https://doi.org/10.1029/2010GL043560

    Article  Google Scholar 

  44. Pedatella, N.M. and Liu, H.-L., The influence of internal atmospheric variability on the ionosphere response to a geomagnetic storm, Geophys. Res. Lett., 2018, vol. 45, no. 10, pp. 4578–4585. https://doi.org/10.1029/2018gl077867

    Article  Google Scholar 

  45. Prölss, G.W., Ionospheric F-region storms, in Handbook of Atmospheric Electrodynamics, Volland, H., Ed., Boca Raton, Fla.: CRC Press, 1995, vol. 2, pp. 195–248.

    Google Scholar 

  46. Richmond, A.D., and Lu, G., Upper-atmospheric effects of magnetic storms: A brief tutorial, J. Atmos. Sol. Terr. Phys., 2000, vol. 62, pp. 1115–1127. https://doi.org/10.1016/S1364-6826(00)00094-8

    Article  Google Scholar 

  47. Rodrigues, F.S., Crowley, G., Azeem, S.M.I., and Heelis, R.A., C/NOFS observations of the equatorial electric field response to the 2009 major stratospheric warming event, J. Geophys. Res., 2011, vol. 116, A09316. https://doi.org/10.1029/2011JA016660

    Article  Google Scholar 

  48. Sojka, J.J., David, M., Schunk, R.W., and Heelis, R.A., A modeling study of the longitudinal dependence of storm time mid-latitude dayside total electron content enhancements, J. Geophys. Res., 2012, vol. 117, A02315. https://doi.org/10.1029/2011JA017000

    Article  Google Scholar 

  49. Sathishkumar, S. and Sridharan, S., Lunar and solar tidal variabilities in mesospheric winds and EEJ strength over Tirunelveli (8.7°N, 77.8°E) during the 2009 major stratospheric warming, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 533–541. https://doi.org/10.1029/2012JA018236

    Article  Google Scholar 

  50. Sridharan, S., Sathishkumar, S., and Gurubaran, S., Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events, Ann. Geophys., 2009, vol. 27, pp. 4125–4130. https:// www.ann-geophys.net/27/4125/2009.

    Article  Google Scholar 

  51. Tsurutani, B., Mannucci, A., Iijima, B., Abdu, M.A., Sobral, J.H.A., Gonzalez, W., et al., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 2004, vol. 109, A08302. https://doi.org/10.1029/2003JA010342

    Article  Google Scholar 

  52. Tsurutani, B.T., Verkhoglyadova, O.P., Mannucci, A.J., Saito, A., Araki, T., et al., Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003, J. Geophys. Res., 2008, vol. 113, A05311. https://doi.org/10.1029/2007JA012879

    Article  Google Scholar 

  53. Vasyliunas, V.M., Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere, McCormac, B.M., Ed., New York: Springer, 1970, pp. 60–71.

    Google Scholar 

  54. Vasyliunas, V.M., The interrelationship of magnetospheric processes, in Earth’s Magnetosphere Processes, McCormac, B.M., Ed., Norwell, Mass.: D. Reidel, 1972, pp. 29–38.

    Google Scholar 

  55. Vlasov, M., Kelley, M.C., and Kil, H., Analysis of ground-based and satellite observations of F-region behavior during the great magnetic storm of July 15, 2000, J. Atmos. Sol. Terr. Phys., 2003, vol. 65, pp. 1223–1234.

    Article  Google Scholar 

  56. Yamazaki, Y., Richmond, A.D., Maute, A., Wu, Q., Ortland, D.A., Yoshikawa, A., Adimula, I.A., Rabiu, B., Kunitake, M., and Tsugawa, T., Ground magnetic effects of the equatorial electrojet simulated by the TIE-G-CM driven by TIMED satellite data, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 3150–3161. https://doi.org/10.1002/2013JA019487

    Article  Google Scholar 

  57. Yamazaki, Y. and Kosch, M.J., The equatorial electrojet during geomagnetic storms and substorms, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 3, pp. 2276–2287. https://doi.org/10.1002/2014ja020773

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

In this current study, the stratospheric, geomagnetic and solar activity data were retrieved from the websites of the NOAA Physical Sciences Laboratory (https://psl.noaa.gov), NASA OMNIweb service, https://omniweb.gsfc. nasa.gov/, and the National Oceanic and Atmospheric Administration (NOAA), solar data service at https://www.ngdc. noaa.gov/stp/solar/solardataservices.html respectively. The GPS-TEC data used are freely downloaded online via National Aeronautics and Space Administration (NASA) Archive of Space Geodesy Data (cddis.nasa.gov/archive/ gnss/data/) and SONEL (www.sonel.org). The magnetometer data were downloaded from the International Real-time Magnetic Observatory Network, INTERMAGNET (www.intermagnet.org). The thermospheric O/N2 column density data is optically obtained from NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite (TIMED/GUVI) Far Ultraviolet (FUV) airglow instruments at http://guvitimed.jhuapl.edu. The authors appreciate all of these scientific organizations. Also, the authors thank Gopi Seemala for providing the GPS TEC processing software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Fashae.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fashae, J.B., Bolaji, O.S. & Rabiu, A.B. Response of the Asian-Australian Low Latitude TEC to the 2013 SSW Event and a Moderate Geomagnetic Storm. Geomagn. Aeron. 63, 1–16 (2023). https://doi.org/10.1134/S0016793222600357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222600357

Keywords:

Navigation