Skip to main content
Log in

Analyzing the Effects of Tropical Cyclone on Critical Frequency of the F 2-Region Ionosphere in South Pacific Region

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

South Pacific countries are prone to climate change, cyclones, earthquakes, drought and other natural disasters. The ionosphere is used for communications and reporting space weather in the South Pacific region hence, its variations must be thoroughly studied. The effects of tropical cyclones (TCs) on the critical frequency (foF 2) of the F 2-region ionosphere, for four selected TCs, in the South Pacific region were studied. The ionosonde stations to which TCs passed within 500 kilometers, were selected. Out of four TCs, two passed near Tahiti (French Polynesia) ionosonde station, one near Papua New Guinea and one near Rarotonga (Cook Islands) ionosonde station. The behavior of foF 2 has been analyzed 2–4 days before the TC, during the days TC and 2–4 days after the cyclone. The actual foF 2 values were compared with the mean and standard deviation of geomagnetically quiet days by eliminating the most disturbed days. The results showed that the foF 2 varied before, during and after the TC. These variations were also noted during geomagnetic quiet days hence, it was clear that the foF 2 variations were due to the TCs. Acoustic gravity waves played an important part in the variation of foF 2 during the selected TCs in the South Pacific region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Atac, T., Ozguc, A., and Pektas, R., The variability of f 0 F2 in different phases of solar cycle 23, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, no. 5, pp. 583–588. https://doi.org/10.1016/j.jastp.2009.01.004

    Article  Google Scholar 

  2. Bauer, S.J., An apparent ionospheric response to the passage of hurricanes, J. Geophys. Res.: Atmos., 1958, vol. 63, pp. 265–269.

    Article  Google Scholar 

  3. Bhagavathiammal, G.J., Lal, M., and Emperumal, K., Observational evidence of equatorial ionospheric response to severe cyclonic storms 'AILA' and 'WARD' observed over the North Indian Ocean, J. Atmos. Sol.-Terr. Phys., 2020, vol. 211, 105462. https://doi.org/10.1016/j.jastp.2020.105462

    Article  Google Scholar 

  4. Borchevkina, O., Karpov, I., Karpov, M., Meteorological storm influence on the ionosphere parameters, Atmosphere, 2020, vol. 11, no. 9, p. 1017. https://doi.org/10.3390/atmos11091017

    Article  Google Scholar 

  5. Borovsky, J.E. and Shprits, Y.Y., Is the Dst Index sufficient to define all geospace storms?, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 11543–11547. https://doi.org/10.1002/2017JA024679

    Article  Google Scholar 

  6. Danilov, A.D. and Laštovička, J., Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeron., 2001, vol. 2, no. 2, pp. 209–224.

    Google Scholar 

  7. Guha, A., Paul, B., Chakraborty, M., and De, B.K., Tropical cyclone effects on the equatorial ionosphere: First result from the Indian sector. J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 5764–5777. https://doi.org/10.1002/2016JA022363

    Article  Google Scholar 

  8. Inc., C. T., Geomagnetic Storms, United States Department of Homeland Security, 2011. https://www.oecd.org/ gov/risk/46891645.pdf.

  9. Kaka, R.O., Nymphas, E.F., Eniafe, S.B., and Alabi, A.O., Variations of the critical frequency of the f 0 F2 in West Africa using ionosonde stations at Ouagadougou and Dakar, Eur. J. Sci. Res., 2014, vol. 124, no. 3, pp. 250–259.

    Google Scholar 

  10. Kumar, S., Chandra, H., and Sharma, S., Geomagnetic storms and their ionospheric effects observed at the equatorial anomaly crest in the Indian Region. J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, pp. 581–594.

    Article  Google Scholar 

  11. Kumar, S. and Kumar, V.V., Ionospheric response to the St. Patrick’s Day space weather events in March 2012, 2013, and 2015 at southern low and middle latitudes, J. Geophys. Res.: Space Phys., 2019, vol. 124, pp. 1–18. https://doi.org/10.1029/2018JA025674

    Article  Google Scholar 

  12. Kumar, V.V. and Parkinson, M.L., A global scale picture of ionospheric peak electron density changes during geomagnetic storms, Space Weather, 2017, vol. 15, pp. 637–652.

    Article  Google Scholar 

  13. Lakshmi, D.R., Veenadhari, B., Dabas, R.S., and Reddy, B.M., Sudden post-midnight decrease in equatorial F-region electron densities associated with severe magnetic storms. Ann. Geophys., 1997, vol. 15, pp. 306–313.

    Article  Google Scholar 

  14. Li, W., Yue, J., Yang, Y., Li, Z., Guo, J., Pan, Y., and Zhang, K., Analysis of ionospheric disturbances associated with powerful cyclones in East Asia and North America, J. Atmos. Sol.-Terr. Phys., 2017, vol. 161, pp. 43–54. https://doi.org/10.1016/j.jastp.2017.06.012

    Article  Google Scholar 

  15. Liu, L., Wan, W., and Ning, B., Statistical modeling of ionospheric foF2 over Wuhan, Radio Sci., 2004, vol. 39, pp. 1–10. https://doi.org/10.1029/2003RS003005

    Article  Google Scholar 

  16. Liu, Y., Wang, J., Xiao, Z., and Suo, Y., A possible mechanism of typhoon effects on the ionospheric F 2 layer, Chin. J. Space Sci., 2006a, vol. 26, no. 2, pp. 92–97.

    Article  Google Scholar 

  17. Liu, Y.M., Wang, J.S., and Suo, Y.-C., Effects of typhoon on the ionosphere, Adv. Geosci., 2006b, vol. 29, pp. 351–360. https://doi.org/10.1142/9789812707185_0029

    Article  Google Scholar 

  18. Lockwood, M., Scott, C.J., Owens, M.J., Barnard, L., and Willis, D.M., Tests of sunspot number sequences: 1. Using ionosonde data, Sol. Phys., 2016, pp. 1–25. https://doi.org/10.1007/s11207-016-0855-8

  19. Mao, T., Wang, J., Yang, G., Yu, T., Ping, J., and Suo, Y., Effects of typhoon Matsa on ionospheric TEC, Chin. Sci. Bull., 2010, no. 8, pp. 712–717. https://doi.org/10.1007/s11434-009-0472-0

  20. Mendoza, B. and Pazos, M., A 22 yr hurricane cycle and its relation with geomagnetic activity, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, pp. 2047–2054. https://doi.org/10.1016/j.jastp.2009.09.012

    Article  Google Scholar 

  21. Mikhailov, A.V., Skoblin, M.G., and Forster, M., Daytime F 2-layer positive storm effect at middle and lower latitudes, Ann. Geophys., 1995, vol. 13, pp. 532–540.

    Article  Google Scholar 

  22. Mosna, Z., Sauli, P., and Santolik, O., Analysis of critical frequencies in the ionosphere, in WDS'08 Proceedings of Contributed Papers, Matfyzpress, 2008, vol. 2, pp. 172–177.

    Google Scholar 

  23. Oyekola, O.S., Comparisons of foF2 with IRI model and equatorial vertical drifts, Adv. Space Res., 2011, vol. 48, pp. 1318–1326. https://doi.org/10.1016/j.asr.2011.06.027

    Article  Google Scholar 

  24. Paul, A.K., Applications for high-accuracy digital ionosonde data, Radio Sci., 1991, vol. 26, no. 4, pp. 949–958. https://doi.org/10.1029/91RS00773

    Article  Google Scholar 

  25. Pazos, M., Mendoza, B., and Gimeno, L., Analysis of precursors of tropical cyclogenesis during different phases of the solar cycle and their correlation with the Dst geomagnetic index, J. Atmos. Sol.-Terr. Phys., 2015, vol. 133, pp. 54–61. https://doi.org/10.1016/j.jastp.2015.07.020

    Article  Google Scholar 

  26. Perevalova, N.P. and Polekh, N.M., An investigation of the upper atmosphere response to Cyclones using ionosonde data in Eastern Siberia and the Far East, Proceedings of the Fifteenth International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics, 2009. https://doi.org/10.1117/12.823814.

  27. Piggott, W.R. and Rawer, K., U.R.S.I. handbook of ionogram interpretation and reduction, Report UAG 23A, 1978. https://repository.library.noaa.gov/view/noaa/10404.

  28. Rice, D.D., Sojka, J.J., Eccles, J.V., and Schunk, R.W., Typhoon Melor and ionospheric weather in the Asian sector: A case study. Radio Sci., 2012, vol. 47, pp. 1–9. https://doi.org/10.1029/2011RS004917

    Article  Google Scholar 

  29. Rishbeth, H. and Mendillo, M., Patterns of F 2-layer variability, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, pp. 1661–1680. https://doi.org/10.1016/S1364-6826(01)00036-0

    Article  Google Scholar 

  30. Sai-Guan, X., Yong-Qiang, H., Dong-He, Z., and Zuo, X., A case study on the detailed process of the ionospheric responses to the typhoon, Chin. J. Geophys., 2006, vol. 49, no. 3, pp. 546–551. https://doi.org/10.1002/cjg2.867

    Article  Google Scholar 

  31. Scotto, C., The accuracy of data from ionosondes for the estimation of hmF2 and the identification of global change in the ionosphere, Adv. Space Res., 2013, vol. 52, pp. 569–574. https://doi.org/10.1016/j.asr.2013.04.007

    Article  Google Scholar 

  32. Sharan, A. and Kumar, S., Long-term trends of the F2-region at mid-latitudes in the Southern Hemisphere, J. Atmos. Sol.-Terr. Phys., 2021, vol. 220. https://doi.org/10.1016/j.jastp.2021.105683

  33. Sharan, A., Lal, A., and Datta, B., A review of groundwater sustainability crisis in the Pacific Island countries: Challenges and solutions, J. Hydrol., 2021, vol. 603, pp. 1–15. https://doi.org/10.1016/j.jhydrol.2021.127165

    Article  Google Scholar 

  34. Sobral, J.H.A., Abdu, M.A., Gonzalez, W.D., Tsurutani, B.T., Batista, I.S., and Gonzalez, A.L.C.D., Effects of intense storms and substorms on the equatorial ionosphere/thermosphere system in the American sector from ground-based and satellite data, J. Geophys. Res., 1997, vol. 102, pp. 14305–14313.

    Article  Google Scholar 

  35. Song, Q., Ding, F., Zhang, X., and Mao, T., GPS detection of the ionospheric disturbances over China due to impacts of Typhoons Rammasum and Matmo. J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 1055–1063. https://doi.org/10.1002/2016JA023449

    Article  Google Scholar 

  36. Vanina-Dart, L. B., Romanov, A. A., and Sharkov, E. A., Influence of a tropical cyclone on the upper ionosphere according to tomography sounding data over Sakhalin Island in November 2007, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 6, pp. 774–782. https://doi.org/10.1134/S001679321106017X

  37. Xiao, Z., Yu, S., Shi, H., and Hao, Y., A brief of recent research progress on ionospheric disturbances, Sci. China, Ser. F: Inf. Sci., 2013, vol. 56, pp. 1–9. https://doi.org/10.1007/s11432-013-5042-z

    Article  Google Scholar 

  38. Xiao, Z. and Xiao, S.-G., Hao, Y.-Q., and Zhang, D.-H., Morphological features of ionospheric response to typhoon, J. Geophys. Res., 2017, vol. 112, pp. 1–5. https://doi.org/10.1029/2006JA011671

    Article  Google Scholar 

  39. Xue, Z. R. and Boon, T. K., The variation of foF2 in the equatorial ionosphere, Proc. of the 2004 Asia-Pacific Radio Sci. Conference, Qingdao, China: IEEE, 2004. https://ieeexplore.ieee.org/document/1422481.

    Google Scholar 

  40. Yu, T., Wang, Y., Mao, T., Wang, J., Wang, S., Shuai, F., and Li, J., A case study of the variation of ionospheric parameter during typhoons at Xiamen, Acta Meteorol. Sin., 2010, vol. 68, no. 4, pp. 569–576.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is thankful for financial support under the research grant FSTER/2015/56 by The University of the South Pacific, Suva, Fiji, under which this work has been carried out. Also the author is thankful to Professor Sushil Kumar of The University of the South Pacific, Fiji for his guidance and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashneel Sharan.

Ethics declarations

The author declare that there is no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashneel Sharan Analyzing the Effects of Tropical Cyclone on Critical Frequency of the F 2-Region Ionosphere in South Pacific Region. Geomagn. Aeron. 62 (Suppl 1), S128–S141 (2022). https://doi.org/10.1134/S0016793222600175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222600175

Navigation