Skip to main content
Log in

On the Transient Response of the Troposphere and Ionosphere during Annular Solar Eclipse Using Radio Signal Analysis

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

On June 21, 2020 an annual solar eclipse was experienced over few parts of the globe. The solar eclipse introduces perturbations in the processes of troposphere and ionosphere. Aim of this research is to find the transient response of the surface level, troposphere and ionosphere during this eclipse using radio data. This analysis has detected that during the eclipse there is an increase in the surface pressure by 1.523 mb, and decrease in temperature by 1.11°C, decrease in pressure at higher tropospheric altitude and increase in lapse rate of the air parcel. At this, change in the stability indices in presence of monsoonal coupling is detected. Sum of Kp is resulted highest and the Dst index is varied as ± 10 nT. Effect of eclipse at the geomagnetic field is found from the estimation of Sq current with the removal of effect of ring current. Negative variation in the X-component and positive variations in the Y- and Z-components of the magnetic field in the eclipse day w.r.t. quiet day are found as –6.5 nT, +13. 4 nT and +16.2 nT respectively. The anomalies in the daily variation of horizontal component and ionospheric current density between eclipse and quiet day response are found as –5.32 nT and 10.738 mA/m2 respectively. High to Moderate correlation between the Dst and TEC variation is obtained. Momentary decrease in TEC top % by 1.1401, depression in TEC mean by 0.047 and decrease in standard deviation and mean of Ne and TEC top % in the F2 layer are noted. Latitude dependency of the ionospheric transients is also detected from the lead and lag of the eclipse time. Favorable conditions for the formation of acoustic gravity wave are also identified from the joint variations of the atmospheric layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Adam, A., Vero, A.J., and Szendroi, J., Solar eclipse effect on geomagnetic induction parameters, Ann. Geophys., 2005, vol. 23, pp. 3487–3494. https://doi.org/10.5194/angeo-23-3487-2005

    Article  Google Scholar 

  2. Amabayo, E., B., Anguma, S.,K., and Jurua, E., Tracking the ionospheric response to the solar eclipse of November 03, 2013, Int. J. Atmos. Sci., 2014, vol. 2014, no. 127859. https://doi.org/10.1155/2014/127859

  3. Aplin, K.L., Scott, C.J., and Gray, S.L., Atmospheric changes from solar eclipses, Phil. Trans. R. Soc. A, 2016, vol. 374, 20150217. https://doi.org/10.1098/rsta.2015.0217

    Article  Google Scholar 

  4. Ates, A., Buyuksarac, A., and Bektaş, O., Geophysical variations during the total solar eclipse in 2006 in Turkey, Turk. J. Earth Sci., 2011, vol. 20, no. 3, pp. 337–342. https://doi.org/10.3906/yer-0906-14

    Article  Google Scholar 

  5. Ates, A., Ekinci, Y.L., Buyuksarac, A., and Aydemir, A., Statistical analysis of geomagnetic field variations during the partial solar eclipses on 2011 January 4 in Turkey, Res. Astron. Astrophys., 2015, vol. 15, no. 5, pp. 742–752. https://doi.org/10.1088/1674-4527/15/5/011

    Article  Google Scholar 

  6. Babakhanov, V., Belenskaya, A.Y., Bizin, M.A., Grekhov, O.M., and Khomutov, S.Y., The geophysical disturbances during the total solar eclipse of 1 August 2008 in Novosibirsk, Russia, J. Atmos. Sol.-Terr. Phys., 2013, vol. 92, pp. 1–6. https://doi.org/10.1016/j.jastp.2012.09.016

    Article  Google Scholar 

  7. Banerjee, A., Sarkar, H., and Bhattacharya, A.B., Studies on solar radio signal variations at frequencies in the VLF and VHF bands, in 2017 IEEE Explore, International Conference on Computer, Electrical, and Communication Engineering (ICCECE), India, 2017, pp. 1–6. https://doi.org/10.1109/ICCECE.2017.8526203.

  8. Bhattacharya, R., Nag, A., Guha, R., Bhoumick, A., and De, S., and Bhattacharya. A., B., Solar eclipse effects of 22 July, 2009 on the propagation of radio signals, Ind. J. Phys., 2010a, vol. 84, pp. 1489–1497. https://doi.org/10.1007/s12648-010-0143-7

    Article  Google Scholar 

  9. Bhattacharya, R., Roy, M., Biswas, M., Guha, R., and Bhoumick, A., Cosmic ray intensity and surface parameters during solar eclipse on July 22, 2009 at Kalyani in West Bengal, Curr. Sci., 2010b, vol. 98, pp. 1609–1614. https://wwwops.currentscience.c.in/Downloads/ article_id_098_12_1609_1613_0.pdf.

    Google Scholar 

  10. Borovsky, J.E. and Shprits, Y.Y., Is the Dst index sufficient to define all geospace storms?, J. Geophys. Res.: Space Phys., 2017, vol. 12, no. 11, pp. 11543–11547. https://doi.org/10.1002/2017JA024679

    Article  Google Scholar 

  11. Chandra, H., Sharma, S., and Lele, P., D., Rajaram, G. and Hanchinal, A., Ionospheric measurements during the total solar eclipse of 11 August 1999, Earth Planet Space, 2007, vol. 59, pp.59–64. https://doi.org/10.1186/BF03352023

    Article  Google Scholar 

  12. Chernogor, L.F. and Mylovanov, Y.B., Ionospheric effects of the August 11, 2018, solar eclipse over the People’s Republic of China, Kinemat. Phys. Celest. Bodies, 2020, vol. 36, pp. 274–290. https://doi.org/10.15407/kfnt2020.06.037

    Article  Google Scholar 

  13. Curto, J.J. and Heilig, B., Modeling the geomagnetic effects caused by the solar eclipse of 11 August 1999, J. Geophys. Res., 2006, vol. 111, A07312. https://doi.org/10.5303/JKAS.2018.51.4.119

    Article  Google Scholar 

  14. Dyakov, Yu., A., Kurdyaeva, Y., A., Borchevkina, O., P., Karpov, I., V., Adamson, S., O., Golubkov, G.,V., Olkhov, O., A., Peskov, V., D., Rodionov, A., I., Rodionova, I., P., Shapovalov, V., L., Shestakov, D.V., and Golubkov, M.G., Vertical propagation of acoustic gravity waves from the lower atmosphere during a solar eclipse, Russ. J. Phys. Chem. B., 2020, vol. 14, pp. 355–361. https://doi.org/10.1134/S1990793120020207

    Article  Google Scholar 

  15. Env parameters and indices National weather service, NOAA. https://www.weather. gov/lmk/indices. Accessed August 29, 2021.

  16. Google Eclipse Map. http://eclipsewise.com/solar/SEgmapx/2001-2100/SE2020Jun21Agmapx.html. Accessed August 28, 2021.

  17. Insakun, N., Wichaipanich, N., and Hozumi, K., 9 March 2016 solar eclipse effects F2 layer peak electron density at conjugate points over Southeast Asia region, in 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE), Pattaya, Thailand, 2019, pp. 1–5. https://doi.org/10.1109/ICITEED.2019.8930004.

  18. Kelley, M.C., Fundamentals of atmospheric ionospheric and magnetospheric plasma dynamics, in International Geophysics, Academic Press, Kelley, M.C., Ed., 2009, vol. 96, ch. 2, pp. 27–70. https://doi.org/10.1016/S0074-6142(09)60219-9.

  19. Knizova, P., K. and Mosna, Z., Acoustic–gravity waves in the ionosphere during solar eclipse events, in Acoustic Waves: From Microdevices to Helioseismology, Beghi, M.G., Ed., London: Intech Open (Online), 2011. https://doi.org/10.5772/19722.

  20. Korte, M., Geomagnetism, in Encyclopedia of Geology, Academic Press, 2021, pp. 664–674. https://doi.org/10.1016/B978-0-08-102908-4.00145-4.

  21. Korte, M., Lühr, H., Förster, M., Haak, V., and Bencze, P., Did the solar eclipse of August 11, 1999 show a geomagnetic effect?, J. Geophys. Res., 2001, vol. 106, no. A9, pp. 18563–18575. https://doi.org/10.1029/2001JA900006

    Article  Google Scholar 

  22. Krankowski, A., Shagimuratov, I.I., Baran, L.W., and Yakimova, G.A., The effect of total solar eclipse of October 3, 2005, on the total electron content over Europe, Adv. Space Res., 2008, vol. 41, no. 4, pp. 628–638. https://doi.org/10.1016/j.asr.2007.11.002

    Article  Google Scholar 

  23. Ladynin, A.V., Semakov, N.N., and Khomutov, S.Y., Changes in the daily geomagnetic variation during the total solar eclipse of 1 August 2008, Russ. Geol. Geophys., 2011, vol. 52, no. 3, pp. 343–352. https://doi.org/10.1016/j.rgg.2011.02.007

    Article  Google Scholar 

  24. Lyashenko, M.V. and Chernogor, L.F., Solar eclipse of August 1, 2008, over Kharkov: Calculation results and discussion, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 3, pp. 367–376. https://doi.org/10.1134/S0016793213020096

  25. Marty, J., Dalaudier, F., Ponceau, D., Blanc, E., and Munkhuu, U., Surface pressure fluctuations produced by the total solar eclipse of 1 August 2008, J. Atmos. Sci., 2013, vol. 70, no. 3, pp. 809–823. https://doi.org/10.1175/JAS-D-12-091.1

    Article  Google Scholar 

  26. Milrad, S., Upper-air observations, in Synoptic Analysis and Forecasting, Elsevier, 2018, Milrad, S., Ed., ch. 4, pp. 41–47. https://doi.org/10.1016/C2015-0-05604-0.

  27. Nayak, C., K., Tiwari, D., Emperumal, K., and Bhattacharyya, A., The equatorial ionospheric response over Tirunelveli to the 15 January 2010 annular solar eclipse: Observations, Ann. Geophys., 2012, vol. 30, pp. 1371–1377. https://doi.org/10.5194/angeo-30-1371-2012

    Article  Google Scholar 

  28. Rastogi, R.G., Geomagnetic field variations at low latitudes and ionospheric electric fields, J. Atmos. Sol.-Terr. Phys., 1993, vol. 55, no. 10, pp. 1375–1381. https://doi.org/10.1016/0021-9169(93)90105-8

    Article  Google Scholar 

  29. Rubertis, D.D., Recent trends in four common stability indices derived from US radiosonde observations, J. Clim., 2006, vol. 19, no. 3, pp. 309–323. https://doi.org/10.1175/JCLI3626.1

    Article  Google Scholar 

  30. Solovieva, M.S., Rozhnoi, A.A., Fedun, V., and Schwingenschuh, K., Effect of the total solar eclipse of March 20, 2015, on VLF/LF propagation, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 3, pp. 323–330. https://doi.org/10.1134/S0016793216030166

  31. Space weather prediction center, NOAA. https://www. swpc.noaa.gov/. Accessed June 1–25, 2020.

  32. Tian, Z., Sui, Y., Zhu, S., and Sun, Y., Y., Enhancement of electron density in the ionospheric F2 layer near the first contact of the total solar eclipse on 21 August 2017, Earth Space Sci., 2022, vol. 9, e2021EA002016. https://doi.org/10.1029/2021EA002016

  33. Tomas, T., Lühr, H., Förster, M., Rentz, S., and Rother, M., Observations of the low-latitude solar eclipse on 8 April 2005 by CHAMP, J. Geophys. Res., 2007, vol. 112, A06303. https://doi.org/10.1029/2006JA012168

    Article  Google Scholar 

  34. Vasyliunas, V.M., The physical basis of ionospheric electrodynamics, Ann. Geophys., 2012, vol. 30, pp. 357–369. https://doi.org/10.5194/angeo-30-357-2012

    Article  Google Scholar 

  35. Wang, K.Y., Liu, C.H., Lee, L.C., and Braesicke, P., Observations of stratosphere–troposphere coupling during major solar eclipses from FORMOSAT-3/COSMIC constellation, Space Sci. Rev., 2012, vol. 168, pp. 261–282. https://doi.org/10.1007/s11214-011-9829-1

    Article  Google Scholar 

  36. Zhang, S.R., Erickson, P.J., Goncharenko, L.P., Coster, A.J., Rideout, W., and Vierinen, J., Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse, Geophys. Res. Lett., 2017, vol. 44. https://doi.org/10.1002/2017GL076054

Download references

ACKNOWLEDGMENTS

We sincerely acknowledge all the data sources viz. Wyoming University, GFZ-Helmholtz Centre Potsdam, World Data Centre for Geomagnetism-Kyoto: University of Kyoto, INTERMAGNET, Goddard Space Flight Canter- NASA, Advanced Composition Explorer (ACE) science centre, NASA and DSCOVER, NOAA, IRI-2016, India Meteorological Department for using part of their relevant data in this work. We also acknowledge JIS University authorities for constant support and encouragement. We are giving our sincere thanks to the anonymous reviewer for the valuable suggestions regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Banerjee or R. Bhattacharya.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Bhattacharya, R. On the Transient Response of the Troposphere and Ionosphere during Annular Solar Eclipse Using Radio Signal Analysis. Geomagn. Aeron. 62 (Suppl 1), S142–S158 (2022). https://doi.org/10.1134/S0016793222100048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222100048

Navigation