Skip to main content
Log in

The Solar Activity Index for the Critical Frequency of the E-Layer at Subauroral Latitudes

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Based on the analysis of data from subauroral ionospheric stations during daytime hours with low geomagnetic activity, it was found that the index P = 0.5(F1 + F81) is the optimal solar activity index for the daily values of the E-layer critical frequency foE, where F1 and F81 are the solar radio flux at a wavelength of 10.7 cm on a given day and the average of this flux over 81 days. The standard deviations σ of the foE dependence on P are at their maximum for winter. The σ value in this season for the Salekhard and Lycksele stations, which are located at the Arctic Circle and near it, is significantly greater than for the Leningrad station. Substituting the P index into the IPG, IRI, or NeQuick models allows these models to be used for the calculation of daily foE values. Based on the preliminary analysis, it was found that the NeQuick model is more accurate than the IPG and IRI models for winter and equinoxes. For summer, these models have approximately the same accuracy with a slight advantage of the IPG model. For the Salekhard and Lycksele stations in winter at foE < 2 MHz, even the NeQuick model underestimates the foE values by approximately 0.2 MHz on average. The search for the causes of this property of the ionosphere requires special consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Antonova, L.A., Ivanov-Kholodnyi, G.S., and Chertoprud, V.E., Aeronomiya sloya E (uchet variatsii UF-izlucheniya i geomagnitnykh vozmushchenii) (Aeronomy of the E Layer (Taking account of Variations in the UV-Radiation and Geomagnetic Disturbances)), Moscow: Yanus, 1996.

  2. Barth, C.A., Mankoff, K.D., Bailey, S.M., and Solomon, S.C., Global observations of nitric oxide in the thermosphere, J. Geophys. Res., 2003, vol. 108, no. A1. https://doi.org/10.1029/2002JA009458

  3. Bilitza, D., IRI the international standard for the ionosphere, Adv. Radio Sci., 2018, vol. 16, pp. 1–11.

    Article  Google Scholar 

  4. Deminov, M.G., Solar-activity index for the E-layer critical frequency at middle latitudes, Geomagn. Aeron. (Engl. Transl.), 2022a, vol. 62, no. 2, pp. 66–70.

  5. Deminov, M.G., Effective solar-activity index for short-term forecasting of the mean solar-activity index, Geomagn. Aeron. (Engl. Transl.), 2022b, vol. 62, no. 3, pp. 178–181.

  6. Deminov, M.G., Shubin, V.N., and Badin, V.I., Model of the E-layer critical frequency for the auroral region, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 5, pp. 713–720.

  7. Gal’perin, Yu.I., Sivtseva, L.D., Filippov, V.M., and Khalipov, V.L., Subavroral’naya verkhnyaya ionosfera (The Subauroral Upper Ionosphere), Novosibirsk: Nauka, 1990.

  8. He, Z., Yu, J., Chen, L., Xia, Z., Wang, W., Li, K., and Cui, J., Statistical study on locally generated high-frequency plasmaspheric hiss and its effect on suprathermal electrons: Van Allen Probes observation and quasi-linear simulation, J. Geophys. Res.: Space, 2020, vol. 125. https://doi.org/10.1029/2020JA028526

  9. Kashirin, A.I., Photoionization in the nocturnal ionosphere, Geomagn. Aeron., 1986, vol. 26, no. 4, pp. 563–568.

    Google Scholar 

  10. Kouris, S.S. and Muggleton, L.M., Diurnal variation in the E-layer ionization, J. Atmos. Terr. Phys., 1973a, vol. 35, pp. 133–139.

    Article  Google Scholar 

  11. Kouris, S.S. and Muggleton, L.M., World morphology of the Appleton E-layer seasonal anomaly, J. Atmos. Terr. Phys., 1973b, vol. 35, pp. 141–151.

    Article  Google Scholar 

  12. Lions, L.R. and Williams, D.J., Quantitative Aspects of Magnetospheric Physics, Dordrecht: D. Reidel, 1984; Moscow: Mir, 1987.

  13. Ma, Q., Li, W., Zhang, X.-J., Bortnik, J., Shen, X.-C., Connor, H.K., et al., Global survey of electron precipitation due to hiss waves in the Earth’s plasmasphere and plumes, J. Geophys. Res.: Space, 2021, vol. 126. https://doi.org/10.1029/2021JA029644

  14. Nava, B., Coisson, P., and Radicella, S.M., A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, no. 15, pp. 1856–1862.

    Article  Google Scholar 

  15. Nusinov, A.A., Deterministic model of the midlatitude and equatorial E-layer (description and comparative characteristics of accuracy), Ionos. Issled., 1988, no. 44, pp. 94–99.

  16. Nusinov, A.A., The ionosphere as a natural detector for studying long-period variations in the fluxes of solar geoeffective radiation, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 6, pp. 718–725.

  17. Nusinov, A.A., Seasonal–latitudinal variations of ionospheric E-layer critical frequencies dependence on solar activity in empirical models, Adv. Space Res., 2006, vol. 37, pp. 433–436.

    Article  Google Scholar 

  18. Pavlov, A.V. and Pavlova, N.M., Comparison of NmE measured by the Boulder ionosonde with model predictions near the spring equinox, J. Atmos. Sol.-Terr. Phys., 2013, vol. 102, pp. 39–47.

    Article  Google Scholar 

  19. Richards, P.G., Fennelly, J.A., and Torr, D.G., EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 1994, vol. 99, pp. 8981–8992.

    Article  Google Scholar 

  20. Richards, P.G., Woods, T.N., and Peterson, W.K., HEUVAC: A new high resolution solar EUV proxy model, Adv. Space Res., 2006, vol. 37, pp. 315–322.

    Article  Google Scholar 

  21. Solomon, S.C., Numerical models of the E-region ionosphere, Adv. Space Res., 2006, vol. 37, pp. 1031–1037. https://doi.org/doi:10.1029/2005JA011160.

    Article  Google Scholar 

  22. Solomon, S.C. and Qian, L., Solar extreme-ultraviolet irradiance for general circulation models, J. Geophys. Res., 2005, vol. 110, A10306.

    Article  Google Scholar 

  23. Starkov, G.V., Statistical dependences between magnetic activity indices, Geomagn. Aeron., 1994, vol. 34, no. 1, pp. 129–131.

    Google Scholar 

  24. Swider, W. and Keneshea, T.J., The quiet sunrise E region: Enhancements at high latitudes in winter due to increased nitric oxide, J. Geophys. Res., 1993, vol. 98, no. A2, pp. 1725–1728.

    Article  Google Scholar 

  25. Titheridge, J.E., Re-modeling the ionospheric E region, Kleinheubacher Ber., 1996, vol. 39, pp. 687–696.

    Google Scholar 

  26. Titheridge, J.E., Ionisation below the night F2 layer—a global model, J. Atmos. Sol.-Terr. Phys., 2003, vol. 65, pp. 1035–1052.

    Article  Google Scholar 

  27. Tsurutani, B.T., Park, S.A., Falkowski, B.J., Bortnik, J., Lakhina, G.S., Sen, A., et al., Low frequency (f < 200 Hz) polar plasmaspheric hiss: coherent and intense, J. Geophys. Res.: Space, 2019, vol. 124. https://doi.org/10.1029/2019JA027102

  28. Wu, C., Ridley, A.J., DeJong, A.D., and Paxton, L.J., FTA: A feature tracking empirical model of auroral precipitation, Space Weather, 2021, vol. 19. https://doi.org/10.1029/2020SW002629

  29. Yang, Z., Ssessanga, N., Tran, L.T., Bilitza, D., and Kenpankho, P., On improvement in representation of foE in IRI, Adv. Space Res., 2017, vol. 60, no. 2, pp. 347–356.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the World Data Center for Solar-Terrestrial Physics, UK, for the foE data of ionospheric stations and solar activity indices (http://www.ukssdc.ac.uk/wdcc1/) and the World Data Center for Geomagnetism, Japan, for the ap index data (http://wdc.kugi.kyoto-u.ac.jp/).

Funding

The study was supported in part by the Russian Science Foundation (RSF) under the scientific project no. 20-72-10 023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Deminov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deminov, M.G., Rogov, D.D. The Solar Activity Index for the Critical Frequency of the E-Layer at Subauroral Latitudes. Geomagn. Aeron. 62, 582–589 (2022). https://doi.org/10.1134/S0016793222050048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222050048

Navigation