Skip to main content
Log in

Sources of Long-Period X-ray Pulsations before the Onset of Solar Flares

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

According to Tan et al. (2016), long-period (with a period P = 1.9‒47.3 min and a duration of 1‒2 h) quasi-periodic pulsations (QPPs) are observed in soft Х-rays before a significant fraction (26‒46%) of “isolated” solar flares. The results were obtained from the GOES/XRS data without spatial resolution. In this paper, we analyzed the sources of such QPPs before 35 “isolated” X-class flares based on ”quick-look” RHESSI images in the 6–12 keV range and found that the events can be divided into two types. In type I events, the sources of all QPPs and the main flare are located in the same active region (AR) on the Sun, while in type II events the sources of at least part of the QPPs are located in a different AR than the flare AR. A more detailed analysis of two type I events and three type II events using RHESSI X-ray and SDO/AIA ultraviolet images shows that the sources of X-ray pulsations in one AR are located in different places (within ~20 Mm from each other and from the main flare) and their appearance corresponds to the appearance of new loop-shaped ultraviolet sources. We present observational arguments, which are not in favor of the mechanisms proposed by Tan et al. (2016) based on oscillations of coronal loops as LRC electric circuits or MHD oscillations of loops. The mechanism of oscillating reconnection seems to be more promising for explaining the QPPs under consideration. In type I events, it occurs in one AR, while in type II events it can occur in parallel in several separated ARs; to explain this it is necessary to assume the coherence of the subphotospheric emergence of magnetic fluxes in different parts of the Sun. This assumption requires further verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig.7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Abramov-Maximov, V.E. and Bakunina, I.A., Features of short-period oscillations of microwave emission from the solar active region before the flare, Phys. At. Nucl., 2018, vol. 81, no. 3, pp. 379–383. https://doi.org/10.1134/S1063778818030031

    Article  Google Scholar 

  2. Abramov-Maximov, V.E. and Bakunina, I.A., Oscillations of the microwave emission of solar active region 12673 before flares, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 7, pp. 822–826. https://doi.org/10.1134/S001679321907003X

  3. Abramov-Maximov, V.E. and Bakunina, I.A., Solar-flare precursors in the microwave range, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 7, pp. 846–852. https://doi.org/10.1134/S0016793220070038

  4. Abramov-Maximov, V.E., Gelfreikh, G.B., and Shibasaki, K., Quasi-periodic oscillations of solar active regions in connection with their flare activity: NoRH observations, Sol. Phys., 2011, vol. 273, pp. 403–412. https://doi.org/10.1007/s11207-011-9822-6

    Article  Google Scholar 

  5. Aleshin, V.I., Kobrin, M.M., and Korshunov, A.I., Quasiperiodic components with periods of from 30 to 60 min in the fluctuation spectra of solar radio emission at 3 cm wavelength, Radiophys. Quantum Electron., 1973, vol. 16, no. 5, pp. 571–576. https://doi.org/10.1007/BF01033493

    Article  Google Scholar 

  6. Benvenuto, F., Schwartz, R., Piana, M., and Massone, A.M., Expectation maximization for hard X-ray count modulation profiles, Astron. Astrophys., 2013, vol. 555, id A61. https://doi.org/10.1051/0004-6361/201321295

  7. Benz, A.O., Flare observations, Living Rev. Sol. Phys., 2017, vol. 14, no. 2. https://doi.org/10.1007/s41116-016-0004-3

  8. Bumba, V. and Kryvsky, L., Chromosphere pre-flares, Bull. Astron. Inst. Czech., 1959, vol. 10, pp. 221–223.

    Google Scholar 

  9. Charikov, Ju.E. and Pharaphonov, V.G., X-ray precursors of solar flares, in Proc. 18th Int. Cosmic Ray Conf., Bangalore, India, 1983, vol. 4, pp. 109–112.

  10. Chifor, C., Tripathi, D., Mason, H.E., and Dennis, B.R., X-ray precursors to flares and filament eruptions, Astron. Astrophys., 2007, vol. 472, pp. 967–979. https://doi.org/10.1051/0004-6361:20077771

    Article  Google Scholar 

  11. Durasova, M.S., Dobrin, M.M., and Yudin, O.I., Evidence of quasi-periodic movements in the solar chromosphere and corona, Nat. Phys. Sci., 1971, vol. 229, pp. 82–84. https://doi.org/10.1038/physci229082b0

    Article  Google Scholar 

  12. Fleishman, G.D., Gary, D.E., Chen, B., Kuroda, N., Yu, S., and Nita, G.M., Decay of the coronal magnetic field can release sufficient energy to power a solar flares, Science, 2020, vol. 367, pp. 278–280. https://doi.org/10.1126/science.aax6874

    Article  Google Scholar 

  13. Fletcher, L., Dennis, B.R., Hudson, H.S., et al., An observational overview of solar flares, Space Sci. Rev., 2011, vol. 159, pp. 19–106. https://doi.org/10.1007/s11214-010-9701-8

    Article  Google Scholar 

  14. Fritzova-Svestkova, L., Chase, R.C., and Svestka, Z., On the occurrence of sympathetic flares, Sol. Phys., 1976, vol. 48, pp. 275–286. https://doi.org/10.1007/BF00151996

    Article  Google Scholar 

  15. Goddard, C.R., Nistico, G., Nakariakov, V.M., Zimovets, I.V., and White, S.M., Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves, Astron. Astrophys., 2016, vol. 594, id A96. https://doi.org/10.1051/0004-6361/201628478

  16. Golubchina, O.A., The sympathetic flares, in Proc. of the Regional Meeting on Solar Physics “Solar Researches in the South-Eastern European Countries: Present and Perspectives”, Bucharest, Romania, 24‒28 April 2001, Bucharest, 2002, pp. 160‒164.

  17. Grigis, P.C. and Benz, A.O., The evolution of reconnection along an arcade of magnetic loops, Astrophys. J., 2005, vol. 625, pp. L143–L146. https://doi.org/10.108 6/431147

    Article  Google Scholar 

  18. Gyenge, N., Ballai, I., and Baranyi, T., Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares, Mon. Not. R. Astron. Soc., 2016, vol. 459, pp. 3532–3539. https://doi.org/10.1093/mnras/stw859

    Article  Google Scholar 

  19. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., et al., The RHESSI imaging concept, Sol. Phys., 2002, vol. 210, pp. 61–86. https://doi.org/10.1023/A:1022436213688

    Article  Google Scholar 

  20. Kobrin, M.M., Korshunov, A.I., Snegirev, S.D., and Timofeev, B.V., On a sharp increase of quasi-periodic components of fluctuations of inclination of the spectrum of solar radio emission at lambda = 3 cm before active events in august 1972, Soln. Dannye, 1973, vol. 10, pp. 79–85.

    Google Scholar 

  21. Kupriyanova, E.G., Kolotkov, D.Yu., Nakaryakov, V.M., and Kaufman, A.S., Quasi-periodic pulsations in solar and stellar flares. Review, J. Sol.-Terr. Phys., 2020, vol. 6, no. 1, pp. 3–23.

    Google Scholar 

  22. Kuznetsov, S.A., Zimovets, I.V., Morgachev, A.S., and Struminsky, A.B., Spatio-temporal dynamics of sources of hard X-ray pulsations in solar flares, Sol. Phys., 2016, vol. 291, pp. 3385–3426. https://doi.org/10.1007/s11207-016-0981-3

    Article  Google Scholar 

  23. Kuznetsov, S.A., Zimovets, I.V., Melnikov, V.F., and Wang, R., Spatio–temporal evolution of sources of microwave and hard X-ray pulsations of the solar flare using the NORH, RHESSI, and AIA/SDO observation data, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 8, pp. 1067–1072. https://doi.org/10.1134/S001679321708014X

  24. Lemen, J.R., Title, A.M., Akin, D.J., et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 17–40. https://doi.org/10.1007/s11207-011-9776-8

    Article  Google Scholar 

  25. Lin, R.P., Dennis, B.R., Hurford, G.J., et al., The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Sol. Phys., 2002, vol. 210, pp. 3–32. https://doi.org/10.1023/A:1022428818870

    Article  Google Scholar 

  26. Martin, S.F., Preflare conditions, changes and events, Sol. Phys., 1980, vol. 68, pp. 217–236. https://doi.org/10.1007/BF00156861

    Article  Google Scholar 

  27. McLaughlin, J.A., Nakariakov, V.M., Dominique, M., Jelinek, P., and Takasao, S., Modelling quasi-periodic pulsations in solar and stellar flares, Space Sci. Rev., 2018, vol. 214, id 45. https://doi.org/10.1007/s11214-018-0478-5

  28. Murray, M.J., van Driel-Gesztelyi, L., and Baker, D., Simulations of emerging flux in a coronal hole: Oscillatory reconnection, Astron. Astrophys., 2009, vol. 494, pp. 329–337. https://doi.org/10.1051/0004-6361:200810406

    Article  Google Scholar 

  29. Nakariakov, V.M., Anfinogentov, S.A., Antolin, P., et al., Kink oscillations of coronal loops, Space Sci. Rev., 2021, vol. 217, no. 6, id 73. https://doi.org/10.1007/s11214-021-00847-2

  30. Pascoe, D.J., Goddard, C.R., and Nakariakov, V.M., Dispersive evolution of nonlinear fast magnetoacoustic wave trains, Astrophys. J. Lett., 2017, vol. 847, id L21. https://doi.org/10.3847/2041-8213/aa8db8

  31. Petrukovich, A.A., Belov, A.V., and Obridko, V.N., Prediction of the heliogeophysical situation, in Plazmennaya geliogeofizika (Plasma Heliogeophysics), Zelenyi, L.M. and Veselovskii, I.S., Eds., Moscow: Fizmatlit, 2008, vol. 2, pp. 235–252.

  32. Priest, E.R. and Forbes, T.G., The magnetic nature of solar flares, Astron. Astrophys. Rev., 2002, vol. 10, pp. 313–377. https://doi.org/10.1007/s001590100013

    Article  Google Scholar 

  33. Sadykov, V.M., Kosovichev, A.G., Kitiashvili, I.N., and Frolov, A., Statistical properties of soft X-ray emission of solar flares, Astrophys. J., 2019, vol. 874, id 19. https://doi.org/10.3847/1538-4357/ab06c3

  34. Schrijver, C.J., Kauristie, K., Aylward, A.D., et al., Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS, Adv. Space Res., 2015, vol. 55, pp. 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023

    Article  Google Scholar 

  35. Sharykin, I.N., Kosovichev, A.G., and Zimovets, I.V., Energy release and initiation of a sunquake in a C-class flare, Astrophys. J., 2015, vol. 807, id 102. https://doi.org/10.1088/0004-637X/807/1/102

  36. Somov, B.V., Plasma Astrophysics, Part II: Reconnection and Flares, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-4295-0.

  37. Stepanov, A.V. and Zaitsev, V.V., Magnitosfery aktivnykh oblastei Solntsa i zvezd (The Magnetospheres of Active Regions of the Sun and Stars), Moscow: Fizmatlit, 2018.

  38. Sych, R., Nakariakov, V.M., Karlicky, M., and Anfinogentov, S., Relationship between wave processes in sunspots and quasi-periodic pulsations in active region flares, Astron. Astrophys., 2009, vol. 505, pp. 791–799. https://doi.org/10.1051/0004-6361/200912132

    Article  Google Scholar 

  39. Tan, B., Yu, Z., Huang, J., Tan, C., and Zhang, Y., Very long-period pulsations before the onset of solar flares, Astrophys. J., 2016, vol. 833, id 206. https://doi.org/10.3847/1538-4357/833/2/206

  40. Van Doorsselaere, T., Kupriyanova, E.G., and Yuan, D., Quasi-periodic pulsations in solar and stellar flares: An overview of recent results (invited review), Sol. Phys., 2016, vol. 291, pp. 3143–3164. https://doi.org/10.1007/s11207-016-0977-z

    Article  Google Scholar 

  41. Van Hoven, G. and Hurford, G.J., Solar flare precursors, Adv. Space Res., 1986, vol. 6, pp. 83–91. https://doi.org/10.1016/0273-1177(86)90121-3

    Article  Google Scholar 

  42. Wang, H., Liu, C., Ahn, K., et al., High-resolution observations of flare precursors in the low solar atmosphere, Nat. Astron., 2017, vol. 1, id 0085. https://doi.org/10.1038/s41550-017-0085

  43. Wang, T., Ofman, L., Yuan, D., Reale, F., Kolotkov, D.Y., and Srivastava, A.K., Slow-mode magnetoacoustic waves in coronal loops, Space Sci. Rev., 201, vol. 217, no. 2, id 34. https://doi.org/10.1007/s11214-021-00811-0

  44. Webb, D.F., Coronal X-ray activity preceding solar flares, Sol. Phys., 1985, vol. 97, pp. 321–344. https://doi.org/10.1007/BF00165993

    Article  Google Scholar 

  45. Wheatland, M.S., The origin of the solar flare waiting-time distribution, Astrophys. J., 2000, vol. 536, pp. L109–L112. https://doi.org/10.1086/312739

    Article  Google Scholar 

  46. White, S.M., Thomas, R.J., and Schwartz, R.A., Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements, Sol. Phys., 2005, vol. 227, pp. 231–248. https://doi.org/10.1007/s11207-005-2445-z

    Article  Google Scholar 

  47. Zaitsev, V.V., Stepanov, A.V., Urpo, S., and Pohjolainen, S., LRC-circuit analog of current-carrying magnetic loop: Diagnostics of electric parameters, Astron. Astrophys., 1998, vol. 337, pp. 887–896.

    Google Scholar 

  48. Zhdanov, A.A., Study of the characteristics of preflare increase of soft X-ray emission intensity, Cand. Sci. (Phys.–Math.) Dissertation, Leningrad: A.F. Ioffe Institute of Physics and Technology, 1985.

  49. Zhdanov, A.A. and Charikov, Yu.E., Power-spectrum analysis of preflare solar X-rays, Sov. Astron. Lett., 1985, vol. 11, no. 2, pp. 88–90.

    Google Scholar 

  50. Zimovets, I.V., Gros, M., and Struminsky, A.B., Evidence of the radio-quiet hard X-ray precursor of the 13 December 2006 solar flare, Adv. Space Res., 2009, vol. 43, pp. 680–686. https://doi.org/10.1016/j.asr.2008.09.009

    Article  Google Scholar 

  51. Zimovets, I.V., Wang, R., Liu, Y.D., Wang, C., Kuznetsov, S.A., Sharykin, I.N., Struminsky, A.B., and Nakariakov, V.M., Magnetic structure of solar flare regions producing hard X-ray pulsations, J. Atm. Sol.-Terr. Phys., 2018, vol. 174, pp. 17–27. https://doi.org/10.1016/j.jastp.2018.04.017

    Article  Google Scholar 

  52. Zimovets, I.V., Sharykin, I.N., and Gan, W.Q., Relationships between photospheric vertical electric currents and hard X-ray sources in solar flares: Statistical study, Astrophys. J., 2020, vol. 891, id 138. https://doi.org/10.3847/1538-4357/ab75be

  53. Zimovets, I.V., McLaughlin, J.A., Srivastava, A.K., et al., Quasi-periodic pulsations in solar and stellar flares: A review of underpinning physical mechanisms and their predicted observational signatures, Space Sci. Rev., 2021, vol. 217, id 66. https://doi.org/10.1007/s11214-021-00840-9

Download references

6. ACKNOWLEDGMENTS

We are grateful to the RHESSI, GOES/XRS, SDO/AIA, and SDO/HMI instrumentation teams, as well as to the creators of the LASCO/SOHO CME catalog for free access to the data, without which this study could not be carried out. We are also grateful to ISSI (Bern) for supporting the international working group Bridging New X-ray Observations and Advanced Models of Flare Variability: A Key to Understanding the Fundamentals of Flare Energy Release, at an online meeting of which (February 7–11, 2022) the present study was discussed. We thank the head of the Department of Functional Analysis and its Applications of the Faculty of Applied Mathematics and Physics of Vladimir State University V.D. Burkov for help in deriving an estimate for the probability of the appearance of a series of QPPs in Section 4.2. We thank the referee for useful comments.

Funding

This work was supported by the Russian Science Foundation (project № 20-72-10 158).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Zimovets, A. B. Nechaeva, I. N. Sharykin or B. A. Nizamov.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimovets, I.V., Nechaeva, A.B., Sharykin, I.N. et al. Sources of Long-Period X-ray Pulsations before the Onset of Solar Flares. Geomagn. Aeron. 62, 356–374 (2022). https://doi.org/10.1134/S0016793222040181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222040181

Navigation