Skip to main content
Log in

Global Development of the Supersubstorm of May 28, 2011

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The paper gives an analysis of the isolated supersubstorm observed during the main phase of the moderate magnetic storm on May 28, 2011 (SYM/H ~ –95 nT), which was caused by the solar wind magnetic cloud. This supersubstorm peaked at around ~0850 UT (SML = ~–2600 nT). The study was based on data from the global SuperMAG and IMAGE magnetometer networks and satellite data from the AMPERE project. Like those in other supersubstorms, the ionospheric currents in this event were found to develop on a global scale: an intense and extended westward electrojet (with a maximum around midnight) was observed in the midnight, morning, and daytime sectors and an intense eastward electrojet was observed in the afternoon and evening sectors. The development of global currents was accompanied by intense positive bays. This was reflected by large values of the MPB index (~4000 nT2). It has been shown that, during the peak development of the supersubstorm, there was a significant increase in the eastward electrojet in the evening sector (~15–18 MLT), an additional affluent longitudinal electric current, and an additional ring current that appeared concurrently in this sector. These facts suggest the hypothesis about the development of an additional substorm current wedge that appeared on the evening side during the supersubstorm and closed on the eastward electrojet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Akasofu, S.-I., The development of the auroral substorm, Planet. Space Sci., 1964, vol. 12, no. 4, pp. 273–282. https://doi.org/10.1016/0032-0633(64)90151-5

    Article  Google Scholar 

  2. Chu, X., Hsu, T.-S., McPherron, R.L., Angelopoulos, V., Pu, Z., Weygang, J.J., Khuhara, K., Connors, M., Kissenger, J., Zhang, H., and Amm, O., Development and validation of inversion technique for substorm current wedge using ground magnetic field data, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 1909–1924. https://doi.org/10.1002/2013ja019185

    Article  Google Scholar 

  3. Chu, X., McPherron, R.L., Hsu, T.-S., and Angelopoulos, V., Solar cycle dependence of substorm occurrence and duration: Implications for onset, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 2808–2818. https://doi.org/10.1002/2015JA021104

    Article  Google Scholar 

  4. Connors, M., McPherron, R.L., Anderson, B.J., Korth, H., Russell, C.T., and Chu, X., Electric currents of a substorm current wedge on 24 February 2010, Geophys. Res. Lett., 2014, vol. 41, pp. 4449–4455. https://doi.org/10.1002/2014gl060604

    Article  Google Scholar 

  5. Despirak, I.V., Lyubchich, A.A., and Kleimenova, N.G., Supersubstorms and conditions in the solar wind, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 2, pp. 170–176. https://doi.org/10.1134/S0016793219020075

  6. Despirak, I.V., Kleimenova, N.G., Gromova, L.I., Gromov, S.V., and Malysheva, L.M., Supersubstorms during storms of September 7–8, 2017, Geomagn. Aeron. (Engl. Transl.), 2020a, vol. 60, no. 3, pp. 292–300. https://doi.org/10.1134/S0016793220030044

  7. Despirak, I.V., Lubchich, A.A., and Kleimenova, N.G., Several special conditions in the solar wind for a supersubstorm appearance. Physics of auroral phenomena, Proc. XLIII Annual Seminar, Apatity, 2020b, pp. 7–10. https://doi.org/10.37614/2588-0039.2020.43.001

  8. Despirak, I.V., Lyubchich, A.A., Kleimenova, N.G., Gromova, L.I., Gromov, S.V., and Malysheva, L.M., Longitude geomagnetic effects of the supersubstorms during the magnetic storm of March 9, 2012, Bull. Russ. Acad. Sci.: Phys., 2021, vol. 85, no. 3, pp. 246–251. https://doi.org/10.3103/S1062873821030096

    Article  Google Scholar 

  9. Feldstein, Y.I. and Starkov, G.V., Dynamics of auroral belt and geomagnetic disturbances, Planet. Space Sci., 1967, vol. 15, pp. 209–229.

    Article  Google Scholar 

  10. Feldstein, Y.I., Popov, V.A., Cumnock, J.A., Prigancova, A., Blomberg, L.G., Kozyra, J.U., Tsurutani, B.T., Gromova, L.I., and Levitin, A.E., Auroral electrojets and boundaries of plasma domains in the magnetosphere during magnetically disturbed intervals, Ann. Geophys., 2006, vol. 24, pp. 2243–2276. https://doi.org/10.5194/angeo-24-2243-2006

    Article  Google Scholar 

  11. Fu, H., Yue, C., Zong, Q.-G., Zhou, X.-Z., and Fu, S., Statistical characteristics of substorms with different intensity, J. Geophys. Res.: Space Phys., 2021, vol. 126, p. e2021JA029318. https://doi.org/10.1029/2021JA029318

  12. Gjerloev, J.W., A global ground-based magnetometer initiative, Eos Trans. Am. Geophys. Union, 2009, vol. 90, pp. 230–231. https://doi.org/10.1029/2009EO270002

    Article  Google Scholar 

  13. Gjerloev, J.W., The SuperMAG data processing technique, J. Geophys. Res., 2012, vol. 117, A09213. https://doi.org/10.1029/2012JA017683

    Article  Google Scholar 

  14. Guineva, V., Werner, R., Despirak, I., Bojilova, R., and Raykova, L., Mid-latitude positive bays during substorms by quiet and disturbed conditions, C. R. Acad. Bulg. Sci.: Space Phys., vol. 74, pp. 1185–1193. https://doi.org/10.7546/CRABS.2021.08.10

  15. Hajra, R. and Tsurutani, B.T., Interplanetary shocks inducing magnetospheric supersubstorms (SML < –2500 nT): Unusual auroral morphologies and energy flow, Astrophys. J., 2018, vol. 858, no. 2, p. 123. https://doi.org/10.3847/1538-4357/aabaed

  16. Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D., and Gjerloev, J.W., Supersubstorms (SML < –2500 nT): Magnetic storm and solar cycle dependences, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 7805–7816. https://doi.org/10.1002/2015JA021835

    Article  Google Scholar 

  17. McPherron, R.L. and Chu, X., The midlatitude positive bay index and the statistics of substorm occurrence, J. Geophys. Res.: Space Phys., 2017, vol. 123, pp. 2831–2850. https://doi.org/10.1002/2017JA024766

    Article  Google Scholar 

  18. McPherron, R.L., Russell, C.T., and Aubry, M.P., Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms, J. Geophys. Res., 1973, vol. 78, no. 16, pp. 3131–3149. https://doi.org/10.1029/ja078i016p03131

  19. Meng, C.-I. and Akasofu, S.-I., A study of polar magnetic substorms: 2. Three-dimensional current system, J. Geophys. Res., 1969, vol. 74, no. 16, pp. 4035–4053. https://doi.org/10.1029/ja074i016p04035

    Article  Google Scholar 

  20. Newell, P.T. and Gjerloev, J.W., Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices, J. Geophys. Res., 2011b, vol. 116, no. A12, p. A12232. https://doi.org/10.1029/2011JA016936

    Article  Google Scholar 

  21. Nishimura, Y., Lyons, L.R., Gabrielse, C., Sivadas, N., Donovan, E.F., Varney, R.H., Angelopoulos, V., Weygand, J.M., Conde, M.G., and Zhang, S.R., J. Geophys. Res.: Space Phys., 2020, vol. 125, no. 4, p. e2019JA027654. https://doi.org/10.1029/2019JA027654

  22. Rostoker, G., Macrostructure of geomagnetic bays, J. Geophys. Res., 1968, vol. 73, no. 13, pp. 4217–4229. https://doi.org/10.1029/ja073i013p04217

    Article  Google Scholar 

  23. Sergeev, V.A., Tsyganenko, N.A., Smirnov, M.V., Nikolaev, A.V., Singer, H.J., and Baumjohann, W., Magnetic effects of the substorm current wedge in a “spread-out-wire” model and their comparison with ground, geosynchronous, and tail lobe data, J. Geophys. Res., 2011, vol. 116, p. A07218. https://doi.org/10.1029/2011JA016471

    Article  Google Scholar 

  24. Troshichev, O.A., Podorozhkina, N.A., Sormakov, D.A., and Janzhura, A.S., PC index as a proxy of the solar wind energy that entered into the magnetosphere: Development of magnetic substorms, J. Geophys. Res.: Space Phys., 2014, vol. 119, no. 8, pp. 6521–6540. https://doi.org/10.1002/2014JA019940

  25. Tsurutani, B.T., Hajra, R., Echer, E., and Gjerloev, J.W., Extremely intense (SML ≤ –2500 nT) substorms: Isolated events that are externally triggered?, Ann. Geophys., 2015, vol. 33, no. 5, pp. 519–524. https://doi.org/10.5194/angeocom-33-519-2015

    Article  Google Scholar 

  26. Tsurutani, B.T., Hajra, R., Tanimori, T., Takada, A., Remya, B., Mannucci, A.J., Lakhina, G.S., Kozyra, J.U., Shiokawa, K., Lee, L.C., Echer, E., Reddy, R.V., and Gonzales, W.D., Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 10, pp. 10 130–10 156. https://doi.org/10.1002/2016JA022499

    Article  Google Scholar 

  27. Viljanen, A. and Häkkinen, L., IMAGE magnetometer network, in Satellite–Ground Based Coordination Sourcebook, Lockwood, M., Wild, M.N., and Opgenoorth, H.J., Eds., ESA, 1997, pp. 111–117.

    Google Scholar 

  28. Zong, Q.-G., Wang, Y.F., Zhang, H., Fu, S.Y., Zhang, H., Wang, C.R., Yuan, C.J., and Vogiatzis, I., Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves, J. Geophys. Res., 2012, vol. 117, no. A11, p. A11206. https://doi.org/10.1029/2012JA018024

  29. Zong, Q.-G., Yue, C., and Fu, S.-Y., Shock induced strong substorms and super substorms: Preconditions and associated oxygen ion dynamics, Space Sci. Rev., 2021, vol. 217, no. 33. https://doi.org/10.1007/s11214-021-00806-x

Download references

6. ACKNOWLEDGMENTS

The authors are grateful to the creators of the OMNI database (http://omniweb.gsfc.nasa.gov), the catalog of large-scale solar-wind types (ftp://ftp.iki.rssi.ru/pub/ omni/catalog), the SuperMAG database (http://supermag. jhuapl.edu/), IMAGE (http://space.fmi.fi/image/), and AMPERE (http://www.ampere.jhuapl.edu) for the permission to use these data in the study.

Funding

The work by I.V. Despirak, N.G. Kleimenova, A.A. Lyubchich, and P.V. Setsko was supported by the Russian Foundation for Basic Research, project no. 20-55-18003Bolg_a; the work by R. Werner was supported by the National Science Foundation of Bulgaria, project no. KP-06-Russia/15); and the work by L.I. Gromova was conducted within the state task of the Pushkov Institute of Terrestrial Magnetism and Radiowave Propagation, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Despirak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Despirak, I.V., Kleimenova, N.G., Lyubchich, A.A. et al. Global Development of the Supersubstorm of May 28, 2011. Geomagn. Aeron. 62, 199–208 (2022). https://doi.org/10.1134/S0016793222030069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222030069

Navigation