Skip to main content
Log in

Spectral and Statistical Properties of the Doppler Frequency Shift during Substorms in the F2 Layer

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The observational results of the spectral density of the Doppler frequency shift Δfd during intervals of bay-like perturbations in the ionospheric F2 layer are presented. We showed that wave perturbations with periods of 1–2 h are observed during substorm intervals, and their intensity reaches a maximum 1–2 h after the substorm onset, after which it decreases. The statistical properties of the Doppler frequency shift variations are analyzed. We showed that the normal law can be used as a probabilistic model of the time series Δfd(t) as a random process in quiet intervals, and the normal law with a refined asymmetry and kurtosis of the probability density function can be used during substorms (Edgeworth series).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Afraimovich, E.L., Kalikhman, A.D., and Korolev, V.A., Method of dynamical spectral analysis in the study of the inhomogeneous structure of the ionosphere, in Issled. po geomagnetizmu, aeronomii i fizike Solntsa (Studies on Geomagnetism, Aeronomy, and Solar Physics), 1972, vol. 21, pp. 77–88.

    Google Scholar 

  2. Afraimovich, E.L., Vugmeister, B.O., Zakharov, V.N., and Korolev, V.A., Automated system for measuring Doppler frequencies and angles of arrival of radio signals reflected from the ionosphere, in Issled. po geomagnetizmu, aeronomii i fizike Solntsa (Studies on Geomagnetism, Aeronomy, and Solar Physics), 1977, vol. 41, pp. 131–138.

    Google Scholar 

  3. Agy, Y., Baker, D.M., and Jones, R.M., Studies of solar flare effects and other ionospheric disturbances by a high frequency Doppler technique, US Department of Commerce, National Bureau of Standards, Tech. Note no. 306, 1965.

  4. Akasofu, S.I. and Chapman, S., Solar–Terrestrial Physics, London: Oxford University Press, 1972; Moscow: Mir, 1975.

  5. Azeem, I., Spectral asymmetry of near-concentric traveling ionospheric disturbances due to Doppler-shifted atmospheric gravity waves, Front. Astron. Space Sci., 2021, vol. 8. https://doi.org/10.3389/fspas.2021.690480

  6. Bennet, J.A., Doppler shift formulas for waves in the ionosphere, Radio Sci., 1976, vol. 11, no. 7, pp. 621–627.

    Article  Google Scholar 

  7. Blagoveshchenskaya, N.F., Borodkin, B.H., Kolosov, O.B., and Shumilov, I.A., Effects of chemical modification of the ionosphere according to shortwave Doppler measurements on inclined radiopaths, Geomagn. Aeron., 1992, vol. 32, no. 6, pp. 122–127.

    Google Scholar 

  8. Bochkarev, V.V., Petrova, I.R., Songatova, A.A., and Teplov, V.Yu., Modern information technologies for creating an automated system of ionospheric monitoring in the shortwave range, in LVII Nauchnaya sessiya, posvyashchennaya dnyu radio: trudy konferentsii (Proceedings of the LVII Scientific Session Devoted to the Day of Radio), Moscow, 2002, vol. 1, pp. 247–250.

  9. Bochkarev, V.V., Petrova, I.R., and Teplov, V.Yu., Effects of the geomagnetic storm on October 29–31, 2003, on mid-latitude short-wave radio paths (the data of Doppler measurements), Cosmic Res., 2004, vol. 42, no. 6, pp. 614–618.

    Article  Google Scholar 

  10. Bochkarev, V.V., Latypov, P.P., Petrova, I.R., and Teplov, V.Yu., Geomagnetic activity effect on variations of the Doppler frequency shift of ionospheric signals, in Izluchenie i rasseyanie EMV: Trudy mezhdunarodnoi konferentsii (Emission and Scattering of Electromagnetic Waves: Proceedings of International Conference), Taganrog, 2005, pp. 425–427.

  11. Borchevkina, O.P., Karpov, I.V., Karpov, A.I., and Il’minskaya, A.V., Acoustic–gravity waves in observations of tropospheric and ionospheric parameters over Kaliningrad, in Physics of Auroral Phenomena. Proc. XXXIX Annual Seminar, Apatity: Polar Geophysical Institute, 2016, pp. 108–111.

  12. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., Ionospheric wave disturbances accompanied by rocket launches against a background of natural transient processes, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 4, pp. 518–534.

  13. Chen, G., Zhao, Z., and Zhang, Y., Ionospheric Doppler and echo phase measured by the Wuhan ionospheric oblique backscattering sounding system, Radio Sci., 2007, vol. 42, RS4007. https://doi.org/10.1029/2006RS003565

    Article  Google Scholar 

  14. Chimonas, G. and Nines, C.O., Atmosphere gravity waves launched by auroral currents, Planet. Space Sci., 1970, vol. 18, no. 4, pp. 565–582.

    Article  Google Scholar 

  15. Chum, J., Hruška, F., Buresova, D., Šindelářová, T., Heida, P., and Bochniček, J., Ionospheric oscillations caused by geomagnetic Pi2 pulsations and their observations by multipoint continuous Doppler sounding: First results, Adv. Space Res., 2009, vol. 44, pp. 667–676. https://doi.org/10.1016/j.asr.2009.04.030

    Article  Google Scholar 

  16. Collins, K., Montare, A., Frissell, N., and Kazdan, D., Citizen scientists conduct distributed Doppler measurement for ionospheric remote sensing, IEEE Geosci. Remote Sens. Lett., 2021. https://www.nist.gov/system/ files/documents/2021/07/20/Citizen_Science_IEEE_ Geoscience_2021.pdf.

  17. Davies, K., Ionospheric Radio Waves, Waltham, Mass.: Blaisdell, 1969; Moscow: Mir, 1973.

  18. Davies, K. and Baker, D.M., On frequency variations of ionospherically propagated HF radio signals, Radio Sci., 1966, vol. 1, no. 5, pp. 545–556.

    Article  Google Scholar 

  19. Davis, M.J., On polar substorms as source of large-scale travelling ionospheric disturbances, J. Geophys. Res., 1971, vol. 76, no. 19, pp. 4525–4533.

    Article  Google Scholar 

  20. Enomoto, Y., Coupled interaction of earthquake nucleation with deep earth gases: A possible mechanism for seismo-electromagnetic phenomena, Geophys. J. Int., 2012, vol. 191, pp. 1210–1214.

    Google Scholar 

  21. Gaivoronskaya, T.V., Shashun’kina, V.M., and Yudovich, L.A., Spectral analysis of the substorm ionospheric effect, Geomagn. Aeron., vol. 21, no. 6, pp. 1126–1128. 1981.

    Google Scholar 

  22. Hannan, E., Time Series Analysis, London: Methuen, 1960; Moscow: Nauka, 1964.

  23. Hao, Y., Xiao, Z., and Zhang, D., Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake, J. Geophys. Res., 2012, vol. 117, A02305. https://doi.org/10.1029/2011JA017036

    Article  Google Scholar 

  24. Hua, J., Meng, L., Zhao, X., Li, G., Wang, D., and You, X., A Doppler shift estimator in radio propagations, Radio Sci., 2009, vol. 44, RS4005. https://doi.org/10.1029/2009RS004159

    Article  Google Scholar 

  25. Jenkins, G. and Watts, D., Spectral Analysis and Its Applications, San Francisco: Holden Day, 1968; vol. 1, Moscow: Mir, 1971; vol. 2, Moscow: Mir, 1972.

  26. Jones, T.B., Wright, D.M., Milner, J., Yeoman, T.K., Reid, T., Chapman, P.J., and Senior, A., The detection of atmospheric waves produced by the total solar eclipse of 11 August 1999, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, pp. 363–374.

    Article  Google Scholar 

  27. Karhunen, T.J.T., Robinson, T.R., Arnold, N.F., and Lester, M., Determination of the parameters of travelling ionospheric disturbances in the high-latitude ionosphere using CUTLASS coherent scatter radars, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, pp. 558–567.

    Article  Google Scholar 

  28. Karpov, I.V., Suslova, O.P., and Vasilevska, D.P., Spectral characteristics of atmospheric disturbances at midlatitudes during geomagnetic storms, Vestn. Balt. Fed. Univ. im. I. Kanta, Ser. Fiz.-Mat. Tekh. Nauki, 2011, no. 4, pp. 54–59.

  29. Kazdan, D., Collins, K., Gibbons, J., Montare, A., Dannhoff, S., Erickson, P.J., and Frissell, N.A., A low-cost HamSCI citizen science HF Doppler receiver for measuring ionospheric variability, in Proc. AGU Fall Meeting,2019, p. SA43C-2113.

  30. Kim, V.Yu., Numerical solution of the inverse problem of multifrequency Doppler sounding of artificial disturbance of electron content in the ionosphere, Vzaimodeistvie vysokochastotnykh radiovoln s ionosferoi (High-Frequency Radiowave Interaction with the Ionosphere), Moscow: IZMIRAN, 1989, pp. 55–65.

    Google Scholar 

  31. Kim, V.Yu. and Panchenko, V.A., Solution of the inverse problem of multi-frequency Doppler sounding of artificial ionospheric disturbances using Abel inversion and smoothing splines, in Vzaimodeistvie radiovoln s ionosferoi (Radiowave Propagation with the Ionosphere), Moscow: Nauka, 1990, pp. 71–83.

  32. Kim, V.Yu., Gorokhov, Yu.V., Panchenko, V.A., and Polimatidi, V.P., Monitoring of short-term ionospheric disturbances using the method of multi-frequency Doppler sounding, in Tr. XX Vserossiiskoi nauch. konf. “Rasprostranenie radiovoln” (Proceedings of the XX All-Russian Scientific Conference “Radiowave Propagation”), Nizhny Novgorod, 2002, p. 82.

  33. Krasnov, V., Drobzheva, Ya.V., and Chum, J., Infrasonic waves in the ionosphere generated by a weak earthquake, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, pp. 1930–1939.

    Article  Google Scholar 

  34. Kulikov, V.V., Shashun’kina, V.M., and Yudovich, L.A., Generation of internal gravitational waves during a magnetic storm, Radiophys. Quantum Electron, 1980, vol. 23, no. 9, pp. 673–676.

    Article  Google Scholar 

  35. Kur’yanov, B.F. and Medvedeva, L.E., Garmonicheskii analiz statsionarnykh sluchainykh protsessov (s ispol’zovaniem bystrogo preobrazovaniya Fur’e) (Harmonic Analysis of Stationary Random Processes (Using Fast Fourier Transforms)), Moscow: MGU, 1970.

  36. Lobachevskii, L.A., Sergeenko, N.P., Sergeenko, O.S., Khar’kov, I.P., and Yudovich, L.A., Variations in the spectral density of wave disturbances in the ionosphere during magnetospheric substorms, in Variatsii ionosfery vo vremya magnitosfernykh vozmushchenii (Ionospheric Variations During Magnetospheric Disturbances), Moscow: Nauka, 1980, pp. 55–61.

  37. Lynn, K.J.W., Gardiner-Garden, R., Sjarifudin, M., Terkildsen, J., and Shi, T.J., Large-scale traveling atmospheric disturbances in the night ionosphere during the solar–terrestrial event of 23 May 2002, J. Atmos. Sol.-Terr. Phys., 2008, no. 70, pp. 2184–2195. https://doi.org/10.1016/j.jastp.2008.05.016

  38. Lynn, K.J.W., Harris, T.J., and Sjarifudin, M., Relationship between electron density, height and sub-peak ionospheric thickness in the night equatorial ionosphere, Ann. Geophys., 2006, vol. 24, pp. 1343–1353.

    Article  Google Scholar 

  39. Middleton, D., An Introduction to Statistical Communication Theory, New York: McGraw-Hill, 1960; Moscow: Sov. Radio, 1961.

  40. Nagorsky, P.M., Analysis of the response of an HF radio signal to ionospheric plasma disturbances caused by acoustic shock waves, Radiophys. Quantum Electron., 1999, vol. 42, no. 1, pp. 31–38.

    Article  Google Scholar 

  41. Namazov, S.A. and Novikov, V.D., Ground radiophysical methods for studying ionospheric inhomogeneities, Ionos. Issled., 1980, no. 30, pp. 87–94.

  42. Namazov, S.A., Novikov, V.D., and Khmel’nitskii, I.A., Doppler frequency shift during ionospheric propagation of decameter radio waves (review), Radiophys. Quantum Electron., 1975, vol. 18, no. 4, pp. 345–364.

    Article  Google Scholar 

  43. Potapova, N.I. and Freizon, I.A., Quasi-periodic variations in parameters of the ionospheric F-region in summer conditions, Geomagn. Aeron., 1978, vol. 18, pp. 1103–1105.

    Google Scholar 

  44. Reinisch, B.W., Galkin, I.A., Khmyrov, G.M., Kozlov, A.V., Bible, K.B., Lisysyan, I.A., Cheney, G.P., Huang, X., Kitroser, D.F., Paznukov, V.V., Luo, Y., Jones, W., Stelmash, S., Hamel, R., and Grochmal, J., The new digisonde for research and monitoring applications, Radio Sci., 2009, vol. 44. https://doi.org/10.1029/2008RS004115

  45. Sergeenko, N., Effects of electric fields in the F2 layer under disturbance conditions using the ground sounding data, in Russian Open Conference on Radio Wave Propagation (RWP): Proceedings, Kazan, 2019, pp. 1–6. https://doi.org/10.1109/RWP.2019.8810360.

  46. Shindin, A.B., Sergeev, E.H., and Grach, S.M., Phase method for sounding of the ionospheric disturbance region using wideband radio signals, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo: Radiofiz., 2010, no. 6, pp. 48–55.

  47. Su, H., Liu, H., Shui, P., and Bao, Z., Estimation of the Doppler frequency and direction of arrival of the ionospherically propagated HF signals, Radio Sci., 2009, vol. 44, RS4002. https://doi.org/10.1029/2008RS003990

    Article  Google Scholar 

  48. Sutcliffe, P.R. and Poole, A.W.V., Ionospheric Doppler and electron velocities in the presence of ULF waves, J. Geophys. Res., 1989, vol. 94, no. A10, pp. 13505–13514.

    Article  Google Scholar 

  49. Šindelářová, T., Burešová, D., and Chum, J., Observations of acoustic-gravity waves in the ionosphere generated by severe tropospheric weather, Stud. Geophys. Geod., 2009, vol. 53, pp. 403–418.

    Article  Google Scholar 

  50. Tarashchuk, Yu.E., Borisov, B.B., and Tsybikov, B.B., Experimental studies of transient daytime Doppler frequency shifts, in Ionosfera i solnechnoi–zemnye svyazi (The Ionosphere and Solar–Terrestrial Relations), Alma-Ata: Nauka Kaz. SSR, 1985, pp. 23–28.

  51. Vsekhsvyatskaya, I.S., Sergeenko, N.P., and Yudovich, L.A., Possible statistical representations of the ionospheric disturbance, in Issledovaniya oblasti F i vneshnei ionosfery (Investigations of the Ionospheric F-Region and the Outer Ionosphere), Moscow: IZMIRAN, 1974.

  52. Vsekhsvyatskaya, I.S., Sergeenko, N.P., Yudovich, L.A., On the stationarity of electron concentration fluctuations in the F2-layer maximum, in Ionosfernye issledovaniya (Ionospheric Studies), Moscow: Nauka, 1975, vol. 23, pp. 52–54.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Sergeenko.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeenko, N.P. Spectral and Statistical Properties of the Doppler Frequency Shift during Substorms in the F2 Layer. Geomagn. Aeron. 61 (Suppl 1), S116–S126 (2021). https://doi.org/10.1134/S0016793222010170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222010170

Navigation