Skip to main content
Log in

Determination of the Enhancement in Electron Temperature in the Subauroral Ionosphere during Magnetic Storms on a Global Scale

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

An attempt was made to determine on a global scale the zone of enhanced electron temperature (Te) in the subauroral ionosphere during magnetic storms via the combination of Te measurement data and images of stable auroral red arcs (red arcs) obtained on satellites. Data from Te measurements on the DMSP and CHAMP satellites and red-arc observation by POLAR spacecraft were used. It is shown that the zone of enhanced Te in coordinates of geographic latitude and local time can be determined during the period of red-arc manifestation based on the results of Te measurements for a relatively short time during the recovery phase of a geomagnetic storm, and the dependence of its parameters on universal time (UT control) can be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Craven, J.D., Frank, L.A., and Ackerson, K.L., Global observations of a SAR arc, Geophys. Res. Lett., 1982, vol. 9, pp. 961–964.

    Article  Google Scholar 

  2. Frank, L.A., Sigwarth, J.B., Craven, J.D., Cravens, J.P., Dolan, J.S., Dvorsky, M.R., Hardebeck, P.K., Harvey, J.D., and Müller, D., The Visible Imaging System (VIS) for the polar spacecraft, Space Sci. Rev., 1995, pp. 297–328.

  3. Golikov, I.A., Gololobov, A.Yu., and Popov, V.I., Mode-ling the electron temperature distribution in the F2 region of high-latitude ionosphere for winter solstice conditions, Sol.-Terr. Phys., 2016, vol. 2, no. 4, pp. 54–62. https://doi.org/10.12737/19424

    Article  Google Scholar 

  4. Golikov, I.A., Gololobov, A.Yu., Popov, V.I., and Varlamov, I.I., Formation of a ring-shaped region of increased electron temperature in the subauroral ionosphere in winter, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 2, pp. 199–204. https://doi.org/10.1134/S0016793219020087

  5. Golikov, I.A., Gololobov, A.Yu., and Baishev, D.G., Universal time control of the parameters of the electron temperature enhancement zone in the winter subauroral ionosphere, J. Atmos. Solar-Terr. Phys., 2020, vol. 211, p. 105458. https://doi.org/10.1016/j.jastp.2020.105458

  6. Greenspan, M.E., Anderson, P.B., and Pelegatti, J.M., Characteristics of the thermal plasma monitors (SSIES) for the Defense Meteorological Satellite Program (DMSP) spacecraft S8 through S10, Tech. Rep. AFGL-TR-86-0227, Air Force Geophys. Lab. Hanscom AFB, Mass., 1986.

  7. Ievenko, I.B. and Alekseev, V.N., Effect of the substorm and storm on the SAR arc dynamics: a statistical analysis, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 5, pp. 592–603.

  8. Khalipov, V.L., Kotova, G.A., Stepanov, A.E., Ievenko, I.B., and Panchenko, V.A., Formation of red arc in the polarization jet band, J. Atmos. Sol.-Terr. Phys., 2018, vol. 179. https://doi.org/10.1016/j.jastp.2018.08.005

  9. Kotova, G.A., The Earth’s plasmasphere: State of studies (a review), Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 4, pp. 409–422.

  10. Kovalevskii, I.V., Cold geomagnetospheric plasma heating processes, Geomagn. Aeron., 1982, vol. 22, no. 3, pp. 445–459.

    Google Scholar 

  11. Kozyra, J.U., Nagy, A.F., and Slater, D.W., High-altitude energy source(s) for stable auroral red arc, Rev. Geophys., 1997, vol. 35, no. 2, pp. 155–190. https://doi.org/10.1029/96RG03194

    Article  Google Scholar 

  12. Maier, E.H., Chandra, S., Brace, L., Hoffman, J.H., Shepherd, G.G., and Whitteker, J.H., The SAR arc event observed during the December 1971 magnetic storm, J. Geophys. Res., 1975, vol. 80, no. 34, pp. 4591–4597. https://doi.org/10.1029/JA080i034p04591

    Article  Google Scholar 

  13. Oyama, S., Shinbori, A., Ogawa, Y., et al., An ephemeral red arc appeared at 68° MLat at a pseudo breakup during geomagnetically quiet conditions, J. Geophys. Res., 2020, vol. 125, no. 10, p. e2020JA028468. https://doi.org/10.1029/2020JA028468

  14. Reigber, C., Lühr, H., and Schwintzer, P., CHAMP mission status, Adv. Space Res., 2002, vol. 30, pp. 129–134.

    Article  Google Scholar 

  15. Rich, F.J. and Hairston, M., Large-scale convection patterns observed by DMSP, J. Geophys. Res., 1994, vol. 99, no. A3, pp. 3827–3844. https://doi.org/10.1029/93JA03296

    Article  Google Scholar 

  16. Shiokawa, K., Hosokawa, K., Sakaguchi, L., Leda, A., Otsuka, Y., Ogawa, T., and Connors, M., The optical mesosphere thermosphere imagers (OMTIs) for network measurements of aurora and airglow, feature perspectives of space plasma and particle instrumentation and international collaborations. AIP Conf. Proc., 2009, vol. 1144, pp. 212–215. https://doi.org/10.1063/1.3169292

    Article  Google Scholar 

  17. Taylor, H.A., Jr. and Walsh, W.J., The light-ion trough, the main trough and the plasmapause, J. Geophys. Res., 1972, vol. 77, no. 34, pp. 6716–6732. https://doi.org/10.1029/JA077i034p06716

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The geomagnetic index data were obtained from the World Data Center C2 for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-u.ac.jp/dst_realtime/index.html) and the World Data System of the International Science Council (http://www.wdcb.ru/stp/geomag/geomagn_Kp_ ap_Ap_ind.ru.html). Experimental data from the DMSP and CHAMP satellites were obtained from the CEDAR Madrigal Database (http://cedar.haystack.mit.edu/) and GeoForschungZentrum (GFZ) Helmholtz Center Potsdam (ftp://anonymous@isdcftp.gfz-potsdam.de/champ/ ME/Level2/PLPT/). Images from the photometer onboard the POLAR satellite and the all-sky camera at Millstone Hill station were obtained from the Coordinated Data Analysis Web (CDAWeb) (https://cdaweb.sci.gsfc.nasa.gov) and the Boston University Imaging Science Laboratory (http://sirius.bu.edu).

Funding

The work was carried out within the framework of a state assignment (state registration number no. АААА-А21-121012000007-4) and was partially funded by the Russian Foundation for Basic Research (project no. 18-45-140037 r_a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Golikov, A. Yu. Gololobov, D. G. Baishev or G. A. Makarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golikov, I.A., Gololobov, A.Y., Baishev, D.G. et al. Determination of the Enhancement in Electron Temperature in the Subauroral Ionosphere during Magnetic Storms on a Global Scale. Geomagn. Aeron. 61 (Suppl 1), S103–S115 (2021). https://doi.org/10.1134/S001679322201008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322201008X

Navigation