Skip to main content
Log in

Discussion of the Problem of Ionospheric Precursors of Magnetic Storms

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The problem of disturbances of the parameters of the F2 layer and the upper ionosphere during the days preceding the beginning of a magnetic storm has already been known for several decades. There are many publications analyzing these disturbances both in the layer critical frequency and layer height and in the total electron content (TEC). The majority of researchers concluded that such disturbances are observed prior to almost any storm and that the positive disturbances (an excess of the values in the prestorm period over the corresponding value on the quiet days) prevail. Some researchers even think that the aforementioned disturbances could be considered precursors of the coming magnetic storm. The concept of so-called Q disturbances is an alternative to the precursor concept. According to this view, the disturbances on prestorm days are not related to the coming storm and are the result of several processes (meteorological influence on the ionosphere, changes in the plasmasphere-ionosphere interaction) that sometimes cause deviations of ionospheric parameters. Both concepts are considered in detail. Arguments in favor of the precursor concept are presented. These arguments are primarily related to the existence of the dependence of the prestorm ionospheric disturbances on parameters of the coming magnetic storm (its intensity, local time of the storm onset etc.). Examples of such dependences are presented. The publications of the last two years containing new experimental data on the foF2 and TEC behavior during the prestorm period are considered briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Blagoveshchensky, D.V. and Kalishin, A.S., Increase in the critical frequency of the ionospheric F region prior to the substorm expansion phase, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 3, pp. 200–209.

  2. Blagoveshchensky, D.V., Sergeeva, M.A., and Kozlovsky, A., Ionospheric parameters as the precursors of disturbed geomagnetic conditions, Adv. Space Res., 2017, vol. 60, no. 11, pp. 2437–2451.

    Article  Google Scholar 

  3. Burešová, D. and Laštovička, J., Pre-storm enhancements of foF2 above Europe, Adv. Space Res., 2007, vol. 39, pp. 1298–1303.

    Article  Google Scholar 

  4. Burešová, D. and Laštovička, J., Pre-storm electron density enhancements at middle latitudes, J. Atmos. Sol.-Terr. Phys., 2008, p. 70.

  5. Chernigovskaya, M.A., Shpynev, B.G. Yasyukevich, A.S., et al., Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations, Adv. Space Res., 2021, vol. 67, no. 2, pp. 772–776.

    Article  Google Scholar 

  6. Danilov, A.D. and Belik, L.D., Thermospheric composition and the positive phase of an ionospheric storm, Adv. Space Res., 1992, vol. 12, no. 10, pp. 257–260.

    Article  Google Scholar 

  7. Danilov, A.D. and Konstantinova, A.V., Ionospheric precursors of geomagnetic storms. 1. A review of the problem, Geomagn. Aeron. (Engl. Transl.), 2019a, vol. 59, no. 5, pp. 554–566.

  8. Danilov, A.D. and Konstantinova, A.V., Behavior of the ionospheric F region prior to geomagnetic storms, Adv. Space Res., 2019b, vol. 64, pp. 1375–1387.

    Article  Google Scholar 

  9. Danilov, A.D. and Konstantinova, A.V., Ionospheric precursors of magnetic storms. 2. Analysis of Slough station data, Geomagn. Aeron. (Engl. Transl.), 2020a, vol. 60, no. 3, pp. 311–317.

  10. Danilov, A.D. and Konstantinova, A.V., Detailed analysis of the behavior of the F2-layer critical frequency prior to geomagnetic storms. 1. Seasonal variations, Geliogeofiz. Issled., 2020b, no. 28, pp. 3–12.

  11. Danilov, A.D. and Konstantinova, A.V., Detailed analysis of the behavior of the F2-layer critical frequency prior to geomagnetic storms. 2. Dependence on the time to the storm onset, Geliogeofiz. Issled., 2020c, no. 28, pp. 13–21.

  12. Danilov, A.D. and Konstantinova, A.V., Detailed analysis of the behavior of the F2-layer critical frequency prior to geomagnetic storms. 3. Dependence on the storm intensity, Geliogeofiz. Issled., 2021a, no. 29, pp. 24–29.

  13. Danilov, A.D. and Konstantinova, A.V., Detailed analysis of the behavior of the F2-layer critical frequency prior to geomagnetic storms. 4. Dependence on solar activity, Geliogeofiz. Issled., 2021b, no. 30, pp. 3–8.

  14. Danilov, A.D. and Konstantinova, A.V., Detailed analysis of the behavior of the F2-layer critical frequency prior to geomagnetic storms. 5. Dependence on the local time of storm onset, Geliogeofiz. Issled., 2021c, no. 30, pp. 15–21.

  15. Danilov, A.D. and Konstantinova, A.V., Behavior of foF2 prior to geomagnetic storms according to Slough and Juliusruh data, Adv. Space Res., 2021d, vol. 67, no. 12, pp. 4066–4077.

    Article  Google Scholar 

  16. Danilov, A.D., Morozova, L.D., and Mirmovich, E.G., On the possible nature of the positive phase of ionospheric storms, Geomagn. Aeron., 1985, vol. 25, no. 5, pp. 768–772.

    Google Scholar 

  17. Joshua, B.W., Adeniyi, J.O., Amory-Mazaudier, C., and Adebiyi, S.J., On the pre-magnetic storm signatures in NmF2 in some equatorial, low and mid-latitude stations, J. Geophys. Res.: Space, 2021a, vol. 126, no. 8.

  18. Joshua, B.W., Adeniyi, J.O., Olawepo, A.O., et al., Latitudinal dependence of ionospheric responses to some geomagnetic storms during low solar activity, Geomagn. Aeron. (Engl. Transl.), 2021b, vol. 61, no. 3, pp. 418–437.

  19. Kane, R.P., Storm-time variations of F2, Ann. Geophys., 1973a, vol. 29, no. 1, pp. 25–42.

    Google Scholar 

  20. Kane, R.P., Global evolution of F2-region storms, J. Atmos. Terr. Phys., 1973b, vol. 35, pp. 1953–1966.

    Article  Google Scholar 

  21. Kane, R.P., Global evolution of the ionospheric electron content during some geomagnetic storms, J. Atmos. Terr. Phys., 1975, vol. 37, pp. 601–611.

    Article  Google Scholar 

  22. Konstantinova A.V., Danilov A.D. Ionospheric precursors of magnetic storms. 3. Analysis of Juliusruh station data, 2021, vol. 61, no. 3, pp. 341–348.

  23. Mikhailov, A.V. and Perrone, L., Pre-storm NmF2 enhancements at middle latitudes: Delusion or reality?, Ann. Geophys., 2009, vol. 27, no. 3, pp. 1321–1330.

    Article  Google Scholar 

  24. Mikhailov, A.V. and Perrone, L., Pre-storm F2-layer Q‑disturbances at middle latitudes: Do they exist?, J. Atmos. Sol.-Terr. Phys., 2020, vol. 213, id 105473. https://doi.org/10.1016/j.jastp.2020.105473

  25. Mikhailov, A.V., Depueva, A.Kh., and Leschinskaya, T.Yu., Morphology of quiet time F2-layer disturbances: High and lower latitudes, Int. J. Geomagn. Aeron., 2004, vol. 5, GI1006. https://doi.org/10.1029/2003GI000058

    Article  Google Scholar 

  26. Mosna, Z., Kouba, D., Knizova, P.K., et al., Ionospheric storm of September 2017 observed at ionospheric station Pruhonice, the Czech Republic, Adv. Space Res., 2020, vol. 65, pp. 115–128.

    Article  Google Scholar 

  27. Swarnalingam, N., Wu, D.L., and Gopalswamy, N., Inter-hemispherical asymmetries in ionospheric electron density responses during geomagnetic storms: A study using space and ground-based GNSS-TEC and GNSS-RO measurements, J. Geophys. Res.: Space, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Danilov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Danilov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, A.D. Discussion of the Problem of Ionospheric Precursors of Magnetic Storms. Geomagn. Aeron. 61 (Suppl 1), S94–S102 (2021). https://doi.org/10.1134/S0016793222010042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222010042

Navigation