Skip to main content
Log in

Type-II Spicules as Important Sources of Both Heating and Sustain the Mass Loss of Solar Corona

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Heat fluxes from hot open magnetic flux tubes into the surrounding corona as a possible source of corona heating are determined. In order to compensate for radiation and thermal conduction losses, approximately 104 hot Type-II spicules are required, which is about 1% of the number of spicules simultaneously observed on the solar disk. It is shown that the main driver for coronal heating is the convective motion of the photosphere which creates emf. The emf supports the electric current in the Type-II spicule and the dissipation of the current in the partially ionized plasma heats the spicule to the temperature >106 K. Model of Type-II spicule as an open magnetic flux tube is discussed. The analysis shows also that Type-II spicules play an important role in the replenishing the solar corona with hot plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aschwanden, M.J., Physics of the Solar Corona. An Introduction with Problems and Solutions, Springer, 2005.

    Google Scholar 

  2. Braginskii, S.I., Transport processes in a plasma, in Reviews of Plasma Physics, Leontovich, M.A., Ed., New York: Consultants Bureau, 1965, pp. 205–311.

    Google Scholar 

  3. De Pontieu, B., McIntosh, S., Hansteen, V.H., et al., A tale of two spicules: The impact of spicules on the magnetic chromosphere, Publ. Astron. Soc. Jpn., 2007, vol. 59, pp. 655–S662. https://doi.org/10.1093/pasj/59.sp3.S655

    Article  Google Scholar 

  4. De Pontieu, B., McIntosh, S.W., Carlsson, M., et al., The origin of hot plasma in the solar corona, Science, 2011, vol. 331, pp. 55–58. https://doi.org/10.1126/science.1197738

    Article  Google Scholar 

  5. De Pontieu, B., Carlsson, M., Rouppe van der Voort, L.H.M., et al., Ubiquitous torsional motions in type II spicules, Astrophys. J. Lett., 2012, vol. 752, pp. L12–L17. https://doi.org/10.1088/2041-8205/752/1/L12

    Article  Google Scholar 

  6. De Pontieu, B., De Moortel, I., Martínez-Sykora, J., and McIntosh, S.W., Observations and numerical models of solar coronal heating associated with spicules, Astrophys. J. Lett., 2017, vol. 845, pp. L18–L24. https://doi.org/10.3847/2041-8213/aa9272

    Article  Google Scholar 

  7. Goodman, M.L., Acceleration of type II spicules in the solar chromosphere, Astrophys. J., 2012, vol. 757, pp. 188–195. https://doi.org/10.1088/0004-637X/757/2/188

    Article  Google Scholar 

  8. Hood, A.W., Coronal heating, Lect. Notes Phys., 2010, vol. 793, pp. 109–160. https://doi.org/10.1007/978-3-642-02289-0_4

    Book  Google Scholar 

  9. Kuperus, M., Ionson, J.A., and Spicer, D.S., On the theory of coronal heating mechanisms, Ann. Rev. Astron. Astrophys., 1981, vol. 19, pp. 7–40. https://doi.org/10.1146/annurev.aa.19.090181.000255

    Article  Google Scholar 

  10. Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, New York: Pergamon, 1987.

    Google Scholar 

  11. Martínez-Sykora, J., Hansteen, V., and Moreno-Insertis, F., On the origin of the type II spicules: Dynamic 3D MHD simulations, Astrophys. J., 2011, vol. 736, pp. 9–21. https://doi.org/10.1088/0004-637X/736/1/9

    Article  Google Scholar 

  12. Murawski, K. and Zaqarashvili, T.V., Numerical simulations of spicule formation in the solar atmosphere, Astron. Astrophys., 2010, vol. 518, pp. A8–A16. https://doi.org/10.1051/0004-6361/201014394

    Article  Google Scholar 

  13. Noyes, R.W., The Sun, Our Star, Harvard University Press, 1982.

  14. Parker, E.N., Topological dissipation and the small-scale fields in turbulent gases, Astrophys. J., 1972, vol. 176, pp. 499–510. https://doi.org/10.1086/151512

    Article  Google Scholar 

  15. Pereira, T.M.D., De Pontieu, B., Carlson, M., et al., An interface region imaging spectrograph: First view on solar spicules, Astrophys. J. Lett., 2014, vol. 729, pp. L15–L20. https://doi.org/10.1088/2041-8205/792/1/L15

    Article  Google Scholar 

  16. Peter, H., Bingert, S., Klimchuk, J.A., et al., Structure of solar coronal loops: From miniature to large-scale, Astron. Astrophys., 2013, vol. 556, pp. A104–A116.

    Article  Google Scholar 

  17. Priest, E.R., Solar Magnetohydrodynamics, Dordrecht: Reidel, 1982.

    Book  Google Scholar 

  18. Roberts, B., Spicules: The resonant response to granular buffeting? Sol. Phys., 1979, vol. 61, pp. 23–34. https://doi.org/10.1007/BF00155443

    Article  Google Scholar 

  19. Schmelz, J.T., Saar, S.H., DeLuca, E.E., et al., Hinode X‑ray telescope detection of hot emission from quiescent active regions: A nanoflare signature? Astrophys. J. Lett., 2009, vol. 693, L131–L135. https://doi.org/10.1088/0004-637X/693/2/L131

    Article  Google Scholar 

  20. Sen, H.K. and White, M.L., A physical mechanism for the production of solar flares, Sol. Phys., 1972, vol. 23, pp. 146–154. https://doi.org/10.1007/BF00153898

    Article  Google Scholar 

  21. Spicer, D.S., Heating by field aligned dc joule dissipation, in Mechanisms of Chromospheric and Coronal Heating: Proc. Int. Conf., Heidelberg (5–8 June 1990), Ulmschneider, P., Priest, E.R., and Rosner, R., Eds., Berlin: Springer, 1991, pp. 547–555.

  22. Stepanov, A.V. and Zaitsev, V.V., Magnitosfery aktivnykh regionov Solntsa i zvezd (Magnetospheres of Active Regions of the Sun and Stars, Moscow: Fizmatlit, 2018. Takeuchi, A. and Shibata, K., Solar photospheric magnetic reconnection, Earth Planets Space, 2001, vol. 53, pp. 605–609. https://doi.org/10.1186/BF03353278

    Article  Google Scholar 

  23. Testa, P. and Reale, F., Hinode/EIS spectroscopic validation of very hot plasma images with SDO in non-flaring active region cores, Astrophys. J. Lett., 2012, vol.750, pp. L10–L14. https://doi.org/10.1088/2041-8205/750/1/L10

    Article  Google Scholar 

  24. Zaitsev, V.V. and Kislyakova, K.G., Plasma heating during the parametric excitation of acoustic waves in coronal magnetic loops, Astron. Rep., 2010, vol. 54, pp. 367–373. https://doi.org/10.1134/S1063772910040086

    Article  Google Scholar 

  25. Zaitsev, V.V. and Kronshtadtov, P.V., Coronal loops heating in the atmosphere of the AD Leo Red Dwarf, Radiophys. Quantum Electron., 2016, vol. 59, pp. 169–176. https://doi.org/10.1007/s11141-016-9687-5

    Article  Google Scholar 

  26. Zaitsev, V.V. and Shibasaki, K., Dissipation of diamagnetic currents and plasma heating in coronal magnetic loops, Astron. Rep., 2005, vol. 49, pp. 1009–1017. https://doi.org/10.1134/1.2139817

    Article  Google Scholar 

  27. Zaitsev, V.V., Stepanov, A.V., and Kronshtadtov, P.V., On the possibility of heating the solar corona by heat fluxes from coronal magnetic structures, Sol. Phys., 2020, vol. 295, pp. 166–180. https://doi.org/10.1007/s11207-020-01732-x

    Article  Google Scholar 

Download references

Funding

This study was funded by the Russian Science Foundation projects no. 20-12-00268 (Section 3), by grants of the Russian Foundation for Basic Research no. 20-02-00108 (Section 5), no. 19-02-00704 (Section 4), as well as the State Assignments nos. 0030-2021-0002, and 1021032422589-5 (Sections 1, 2, and 6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Stepanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, V.V., Stepanov, A.V. & Kronshtadtov, P.V. Type-II Spicules as Important Sources of Both Heating and Sustain the Mass Loss of Solar Corona. Geomagn. Aeron. 61, 1116–1121 (2021). https://doi.org/10.1134/S0016793221080235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221080235

Navigation