Skip to main content
Log in

Spatio-temporal Dynamics of Fast Electrons and Plasma Turbulence in an Inhomogeneous Flare Plasma

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The spatio-temporal dynamics of the propagation of fast electrons in solar plasma is examined with consideration of their interaction with Langmuir waves, which are generated during the development of beam instability. As a result of numerical simulation, the electron-distribution function and the spectral energy density of Langmuir waves are obtained for different times and at different distances from the place of acceleration in the flare loop. It is shown that the maximum of the distribution function of fast electrons changes little at a distance of ~106 cm. At large distances, the distribution function decreases; some of the electrons propagate in the flare loop, at least over a distance of ~108 cm. The length of the region with an increased level of energy density of Langmuir waves is ~107–108 cm, and the maximum value of the energy density of Langmuir waves reaches 10–2 erg/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Charikov, Yu.E. and Shabalin, A.N., Hard X-ray generation in the turbulent plasma of solar flares, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 8, pp. 1068–1074.

  2. Diakonov, S.V. and Somov, B.V., Thermal electrons runaway from a hot plasma during a flare in the reverse-current model and their X-ray bremsstrahlung, Sol. Phys., 1988, vol. 116, pp. 119–139.

    Article  Google Scholar 

  3. Dmitriev, P.B., Kudryavtsev, I.V., Lazutkov, V.P., et al., Solar flares registered by the IRIS spectrometer onboard the CORONAS-F satellite: Peculiarities of the X-ray emission, Sol. Syst. Res., 2006, vol. 40, no. 2, pp. 142–152.

    Article  Google Scholar 

  4. Grognard, R.J.-M., Deficiencies of the asymptotic solutions commonly found in the quasilinear relaxation theory, Aust. J. Phys., 1975, vol. 28, pp. 731–753.

    Article  Google Scholar 

  5. Hamilton, R.J. and Petrosian, V., Generation of plasma waves by thick-target electron beams and the expected radiation signature, Astrophys. J., 1987, vol. 321, pp. 721–734.

    Article  Google Scholar 

  6. Ivanov, A.A. and Rudakov, L.I., Quasilinear relaxations dynamics of a collisionless plasma, Sov. Phys. JETP, 1967, vol. 24, no. 5, pp. 1027–1034.

    Google Scholar 

  7. Kaplan, S.A. and Tsytovich, V.N., Plazmennaya astrofizika (Plasma Astrophysics), Moscow: Nauka, 1972.

  8. Kontar, E.P., Ratcliffe, H., and Bian, N.H., Wave-particle interactions in non-uniform plasma and the interpretation of hard X-ray spectra in solar flares, Astron. Astrophys., 2012, vol. 539, p. A43.

  9. Kudryavtsev, I.V. and Charikov, Yu.E., Kinetics of fast electrons in ion-acoustic waves in the turbulent plasma of solar flares, Sov. Astron., 1991, vol. 35, no. 4, pp. 409–414.

    Google Scholar 

  10. Kudryavtsev, I.V. and Charikov, Yu.E., Bremsstrahlung of relativistic electrons accelerated in solar flares: The intensity and degree of polarization, Tech. Phys., 2012, vol. 57, no. 10, pp. 1372–1379.

    Article  Google Scholar 

  11. Kudryavtsev, I.V. and Kaltman, T.I., Influence of the angular distribution of Langmuir waves on the directivity of radio emission at double plasma frequency, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 8, pp. 1122–1125.

  12. Kudryavtsev, I.V. and Kaltman, T.I., On the influence of Langmuir wave spectra on the spectra of electromagnetic waves generated in solar plasma with double plasma frequency, Monthly Notices of the Royal Astronomical Society, 2021, vol. 503, pp. 5740–5745.

  13. Kudryavtsev, I.V., Kaltman, T.I., Vatagin, P.V., and Charikov, Yu.E., Dynamics of fast electrons in an inhomogeneous plasma with plasma beam instability, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 7, pp. 838–842.

  14. Melnikov, V.F. and Filatov, L.V., Conditions for whistler generation by nonthermal electrons in flare loop, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 8, pp. 1126–1131.

  15. Melnikov, V.F., Charikov, Yu.E., and Kudryavtsev, I.V., Spatial brightness distribution of hard X-ray emission along flare loops, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 7, pp. 863–866.

  16. Melrose, D.B., Instabilities in Space and Laboratory Plasmas, Cambridge: Cambridge Univ. Press, 1986.

    Book  Google Scholar 

  17. Nocera, L., Skrynnikov, Yu.I., and Somov, B.V., Hard X‑ray bremsstrahlung produced by electrons escaping a high-temperature thermal source in solar flare, Sol. Phys., 1985, vol. 97, pp. 81–105.

    Article  Google Scholar 

  18. Ratcliffe, H., Kontar, E.P., and Reid, A.S., Large-scale simulations of type III radio bursts: Flux density, drift rate, duration, and bandwidth, Astron. Astrophys., 2014, vol. 572, p. A111.

  19. Reznikova, V.E., Melnikov, V.F., Shibasaki, K., et al., 2002 August 24 limb flare loop: Dynamics of microwave brightness distribution, Astrophys. J., 2009, vol. 697, pp. 735–749.

    Article  Google Scholar 

  20. Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1989.

  21. Stepanov, A.V. and Tsap, Y.T., Electron–whistler interaction in coronal loops and radiation signatures, Sol. Phys., 2002, vol. 211, pp. 135–154.

    Article  Google Scholar 

  22. Tsytovich, V.N., Teoriya turbulentnoi plazmy (Theory of Turbulent Plasma), Moscow: Atomizdat, 1971.

  23. Zaitsev, V.V. and Stepanov, A.S., The plasma radiation of flare kernels, Sol. Phys., 1983, vol. 88, pp. 297–313.

    Article  Google Scholar 

  24. Zharkova, V.V., Brown, J.C., and Syniavskii, D.V., Electron beam dynamics and hard X-ray bremsstrahlung polarization in a flaring loop with return current and converging magnetic field, Astron. Astrophys., 1995, vol. 304, pp. 284–295.

    Google Scholar 

  25. Zharkova, V.V., Kuznetsov, A.A., and Siversky, T.V., Diagnostics of energetic electrons with anisotropic distributions in solar flares, Astron. Astrophys., 2010, vol. 512, p. A8.

  26. Zheleznyakov, V.V. and Zaitsev, V.V., On the theory of type III solar radio bursts, Astron. Zh., 1970, vol. 47, no. 1, pp. 60–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. V. Vatagin or I. V. Kudryavtsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatagin, P.V., Kudryavtsev, I.V. Spatio-temporal Dynamics of Fast Electrons and Plasma Turbulence in an Inhomogeneous Flare Plasma. Geomagn. Aeron. 61, 1135–1140 (2021). https://doi.org/10.1134/S001679322108020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322108020X

Navigation