Skip to main content
Log in

Features of Radio-Brightness Distribution over the Solar Disk at Millimeter Waves: Models and Observations

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Millimeter emission of the quiet Sun is generated entirely in the chromosphere and therefore can serve as a convenient tool for chromospheric plasma diagnostics. This paper presents model calculations of the radio-brightness distribution over the solar disk to test two chosen versions of a modern, realistic, spatially inhomogeneous, three-dimensional model of the chromosphere based on the Bifrost code (Carlsson et al., 2016). Comparison of the calculated and observed data demonstrates agreement: the disk brightness (on average, without small-scale fluctuations reflecting the inhomogeneity of the chromosphere) remains constant up to distances of around 0.95 of the solar radius from the disk center. The model brightness at the limb does not exceed twice the brightness of the disk center, with no significant brightening immediately behind the limb. At the same time, the model values of the radio radius, which characterize the height of the chromosphere, turn out to be much smaller than the observed values available in the literature. This discrepancy (an underestimated value of the radio radius) may be due the fact that a number of physical processes are not taken into account in 3D models, e.g., the LTE assumption (Martínez-Sykora et al., 2020). Conversely, the observed values of the radio radius may be overestimated, as evidenced by our recent eclipse measurements in 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Athay, R.G., Hα and D3 profiles in chromospheric spicules, Ann. Astrophys., 1958, vol. 21, p. 98.

    Google Scholar 

  2. Bastian, T.S., Ewell, M.W., Jr., and Zirin, H., The center-to-limb brightness variation of the sun at 850 microns, Astrophys. J., 1993, vol. 415, pp. 364–375.

    Article  Google Scholar 

  3. Belkora, L., Hudford, G., Gary, D., and Woody, D., Measurement of the solar limb brightness profile at 3 millimeters during the total eclipse of 1991 July 11, Astrophys. J., 1992, vol. 400, pp. 692–698.

    Article  Google Scholar 

  4. Carlsson, M., Hansteen, V., Gudiksen, B.V., et al., A publicly available simulation of an enhanced network region of the Sun, Astron. Astrophys., 2016, vol. 585, p. A4.

  5. Ewell, M.W., Zirin, H., Jensen, J.B., and Bastian, T.S., Submillimeter observations of the 1991 July 11 total solar eclipse, Astrophys. J., 1993, vol. 403, pp. 426–433.

    Article  Google Scholar 

  6. Fontenla, I.M., Avrett, E.H., and Loeser, R., Energy balance in the solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion, Astrophys. J., 1993, vol. 406, pp. 319–345.

    Article  Google Scholar 

  7. Gudiksen, B.V., Carlsson, M., Hansteen, V.H., et al., The stellar atmosphere simulation code Bifrost. Code description and validation, Astron. Astrophys., 2011, vol. 531, p. A154.

  8. Krissinel’, B.B., Modeling of the structure of quiescent areas of the solar atmosphere emitting at 1–100 cm, Astron. Rep., 2015, vol. 59, no. 1, pp. 58–71.

  9. Loukitcheva, M., First solar observations with alma, Adv. Space Res., 2019, vol. 63, no. 4, pp. 1396–1403.

    Article  Google Scholar 

  10. Loukitcheva, M.A. and Nagnibeda, V.G., Radio emission of solar chromosphere at millimeter wavelengths, in Proceedings of the 1st Solar and Space Weather Euroconference: The Solar Cycle and Terrestrial Climate, ESA, 2000, vol. 463, pp. 363–366.

  11. Loukitcheva, M., Solanki, S., Carlsson, M., and Stein, R., Millimeter observations and chromospheric dynamics, Astron. Astrophys., 2004, vol. 419, pp. 747–756.

    Article  Google Scholar 

  12. Loukitcheva, M., Solanki, S., Carlsson, M., and White, S., Millimeter radiation from a 3D model of the solar atmosphere. I. Diagnosing chromospheric thermal structure, Astron. Astrophys., 2015, vol. 575, p. A15.

  13. Loukitcheva, M., White, S.M., Solanki, S.K., Fleishman, G.D., and Carlsson M., Millimeter radiation from a 3D model of the solar atmosphere. II. Chromospheric magnetic field, Astron. Astrophys., 2017, vol. 601, p. A43.

  14. Martínez-Sykora, J., Leenaart, J., De Pontieu, B., et al., Ion-neutral interactions and nonequilibrium ionization in the solar chromosphere, Astrophys. J., 2020a, vol. 889, no. 2, p. 95.

  15. Martínez-Sykora, J., De Pontieu, B., de la Cruz, Rodriguez., and Chintzoglou, G., The formation height of millimeter-wavelength emission in the solar chromosphere, Astrophys. J. Lett., 2020b, vol. 891, no. 2, p. 95.

  16. Menezes, F., Selhorst, C.L., Giménez de Castro, C.G., and Valio, A., The subterahertz solar cycle: Polar and equatorial radii derived from SST and ALMA, Astrophys. J., 2021, vol. 910, no. 2, p. 77.

  17. Nagnibeda, V.G. and Piotrovich, V.V., Solar radio emission in the millimeter wave range, Tr. Astron. Obs. Leningr. Gos. Univ., 1987, vol. 41, pp. 5–80.

    Google Scholar 

  18. Nagnibeda, V.G. and Piotrovitch, V.V., Solar brightness distribution and its variability at 3 mm wavelength, Sol. Phys., 1994, vol. 152, pp. 175–180.

    Article  Google Scholar 

  19. Nagnibeda, V.G. and Rozanov, B.A., Solar eclipse observations at short millimetre wavelengths, ASPS Conf. Ser., 1998, vol. 155, pp. 416–420.

  20. Nagnibeda, V.G., Topchilo, N.A., Rakhimov, I.A., et al., Features of the radio brightness distribution over the solar disk at mm waves: Models and observations, in Tr. XXIV Vseross. konf. po fizike Solntsa “SSZF-2020” (Proceedings of the XXIV All-Russian Conference on Solar Physics “SSTP-2020”), St. Petersburg, GAO RAS, 2020, pp. 239–242.

  21. Nindos, A., Alissandrakis, C., Bastian, T., et al., First high-resolution look at the quiet Sun with ALMA at 3mm, Astron. Astrophys., 2018, vol. 619, p. L6.

  22. Rakhimov, I.A. D’yakov, A.A., Olifirov, V.G., et al., The solar eclipse of June 21, 2020 according to IAA RAS radio telescope observations (preliminary results), in Tr. XXIV Vseross. konf. po fizike Solntsa “SSZF-2020” (Proceedings of the XXIV All-Russian Conference on Solar Physics “SSTP-2020”), St. Petersburg, CAO RAS, 2020, pp. 239–242.

  23. Selhorst, C.L., Silva, A.V.R., and Costa, J.E.R., Solar atmospheric model with spicules applied to radio observation, Astron. Astrophys., 2005, vol. 433, pp. 365–374.

    Article  Google Scholar 

  24. Selhorst, C., Simões, P., Brajša, R., et al., Solar polar brightening and radius at 100 and 230 GHz observed by ALMA, Astrophys. J., 2019, vol. 871, no. 1, p. 45.

  25. Shklovskii, I.S., Solnechnaya korona (The Solar Corona), Moscow–Leningrad: Izd. Tekh.-teor. lit., 1951.

  26. Topchilo, N.A., The solar radio radius at 0.82 and 1.35 cm wavelengths, Tr. Astron. Obs. Leningr. Gos. Univ., 1987, vol. 41, pp. 143–155.

    Google Scholar 

  27. Topchilo, N.A., Loukitcheva, M.A., Nagnibeda, V.G., and Ryzhov, V.S., The solar radio radius in the mm range and modern chromospheric models, in Tr. XXIII Vseross. konf. po fizike Solntsa “SSZF-2020” (Proceedings of the XXIII All-Russian Conference on Solar Physics “SSTP-2020”), St. Petersburg, CAO RAS, 2019, pp. 403–406.

  28. Vernazza, J.E., Avrett, E.H., and Loeser, R., Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun, Astrophys. J., Suppl., 1981, vol. 45, pp. 635–725.

    Article  Google Scholar 

  29. White, S.N. and Kundu, M., Observations of the 1991 eclipse at 3.5 mm wavelength, in Proc. IAU Symp. 154: Infrared Solar Physics, Dordrecht: Kluwer, 1994, pp. 167–172.

  30. Wootten, A. and Thompson, AR., The Atacama Large Millimeter/Submillimeter Array, Proc. IEEE, vol. 97, no. 8, pp. 1463–1471.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Nagnibeda.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagnibeda, V.G., Topchilo, N.A., Loukitcheva, M.A. et al. Features of Radio-Brightness Distribution over the Solar Disk at Millimeter Waves: Models and Observations. Geomagn. Aeron. 61, 1150–1158 (2021). https://doi.org/10.1134/S001679322108017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322108017X

Navigation