Skip to main content
Log in

Errors in Estimating of the F2-Layer Peak Parameters in Automatic Systems for Processing the Ionograms in the Vertical Radio Sounding of the Ionosphere under Low Solar Activity Conditions

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The article analyzes the errors in estimating the parameters of the main ionospheric maximum, plasma frequency foF2 and its height hmF2, by automated systems for processing the vertical radio sounding data of the ionosphere at the IZMIRAN station in 2018, during a period of low solar activity. It considers the results of the two most commonly used programs that scale observatory registrations of the ionosphere state, ARTIST 5, part of the DPS-4 ionosonde (DPS–ARTIST complex), and Autoscala 5.1, adapted for the Parus-A ionosonde (Parus–Autoscala complex). An independent system for analyzing ionograms from the Parus-A ionosonde by an operator is used as an etalon in comparing the results. It is shown that the foF2 estimates by both automated systems are sufficiently reliable with a standard deviation of 0.1 MHz. The errors in hmF2 estimation differ significantly and are characterized by a general negative bias, depending on the year’s season, and are most significantly expressed in the local noontime. The statistical values of the hmF2 deviations, in the common case, are significantly larger for the DPS–ARTIST system and are principally close to the results of the comparison with the Millstone Hill incoherent scatter radar data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Altadill, D., Magdaleno, S., Torta, J.M., and Blanch, E., Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Adv. Space Res., 2013, vol. 52, pp. 1756–1769. https://doi.org/10.1016/j.asr.2012.11.018

    Article  Google Scholar 

  2. Bilitza, D., Sheikh, N.M., and Eyfrig, R., A global model for the height of the F2-peak using M3000 values from CCIR, Telecommun. J., 1979, vol. 46, pp. 549–553.

    Google Scholar 

  3. Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., and Huang, X., International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions, Space Weather, 2017, vol. 15, pp. 418–429. https://doi.org/10.1002/2016SW00159

    Article  Google Scholar 

  4. Chen, C.F., Reinisch, B.W., Scali, J.L., et al., The accuracy of ionogram-derived N(h) profiles, Adv. Space Res., 1994, vol. 14, no. 12, pp. 43–46.

    Article  Google Scholar 

  5. Davies, K., Radio Waves in the Ionosphere, Waltham, MA: Blaisdell, 1969; Moscow: Mir, 1973.

  6. Galkin, I.A., Khmyrov, G.M., Kozlov, A.V., Reinisch, B.W., Huang, X., and Paznukhov, V.V., The ARTIST 5, AIP Conf. Proc., 2008, vol. 974, no. 1, pp. 150–159. https://doi.org/10.1063/1.2885024

    Article  Google Scholar 

  7. Givishvili, G.V. and Leshchenko, L.N., Network ionosonde PARUS-A: Record history, in Sistemnyi monitoring ionosfery (System Monitoring of the Ionosphere), Moscow: Fizmatlit, 2019, pp. 21–37 (in Russian).

  8. Krasheninnikov, I.V., Pavlova, N.M., and Sitnov, Yu.S., IRI model in the problem of predicting ionospheric radio-wave propagation under conditions of high solar activity, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 6, pp. 719–726.

  9. Krasheninnikov, I., Pezzopane, M., and Scotto, C., Application of Autoscala to ionograms recorded by the AIS-Parus ionosonde, Comput. Geosci., 2010, vol. 36, pp. 628–635.

    Article  Google Scholar 

  10. Panchenko, V.A., Ten years of the DPS-4 ionosonde in IZMIRAN, in Sistemnyi monitoring ionosfery (System Monitoring of the Ionosphere), Moscow: Fizmatlit, 2019, pp. 38–64 (In Russian).

  11. Perrone, L., Mikhailov, A.V., Scotto, C., and Sabbagh, D., Testing of the method retrieving a consistent set of aeronomic parameters with millstone Hill ISR noontime hmF2 observations, IEEE Geosci. Remote Sens., 2020. https://doi.org/10.1109/LGRS.2020.3007362

  12. Pezzopane, M. and Scotto, C., Software for the automatic scaling of critical frequency foF2 and MUF(3000)F2 from ionograms applied at the ionospheric observatory of Gibilmanna, Ann. Geophys., 2004, vol. 47, no. 6, pp. 1783–1790.

    Google Scholar 

  13. Pezzopane, M. and Scotto, C., Automatic scaling of critical frequency foF2 and MUF(3000)F2: A comparison between Autoscala and ARTIST 4.5 on Rome data, Radio Sci., 2007, vol. 42, RS4003. https://doi.org/10.1029/2006RS003581

    Article  Google Scholar 

  14. Pezzopane, M. and Scotto, C., A method for automatic scaling of F1 critical frequency from ionograms, Radio Sci., 2008, vol. 43, RS2S91. https://doi.org/10.1029/2007RS003723

    Article  Google Scholar 

  15. Pezzopane, M., Scotto, C., Tomasik, Ł., and Krasheninnikov, I., Autoscala: An aid for different ionosondes, Acta Geophys., 2010, vol. 58, pp. 513–526.

    Article  Google Scholar 

  16. Reinisch, B.W. and Huang, X., Automatic calculation of electron density profiles from digital ionograms. Processing of bottomside ionograms, Radio Sci., 1983, vol. 18, pp. 477–492.

    Article  Google Scholar 

  17. Scotto, C., Electron density profile calculation technique for Autoscala ionogram analysis, Adv. Space Res., 2009, vol. 44, no. 6, pp. 756–766.

    Article  Google Scholar 

  18. Scotto, C. and Sabbagh, D., The accuracy of real-time hmF2 estimation from ionosondes, Remote Sens., 2020, vol. 12, no. 17, id 2671. https://doi.org/10.3390/rs12172671

  19. Shubin, V.N., Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based digisonde observations, Adv. Space Res., 2015, vol. 56, pp. 916–928.

    Article  Google Scholar 

  20. Shubin, V. N. and Deminov, M.G., Global dynamic model of critical frequency of the ionospheric F2 layer, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 4, pp. 429–440.

  21. Shubin, V.N. and Gulyaeva, T.L., Solar forcing on the ionosphere: global model of the F2 layer peak parameters driven by re-calibrated sunspot numbers, Acta Astronaut., 2021, vol. 179, pp. 197–208.

    Article  Google Scholar 

  22. Titheridge, J.E., The real height of ionograms: A genera-lized formulating, Radio Sci., 1988, vol. 23, no. 5, pp. 831–849.

    Article  Google Scholar 

  23. URSI Handbook of Ionogram Interpretation and Reduction, Washington, D.C.: U.S. Department of Commerce, 1978; Moscow: Nauka, 1978.

  24. Zawdie, K.A., Drob, D.P., Siskind, D.E., and Coker, C., Calculating the absorption of HF radio waves in the ionosphere, Radio Sci., 2017, vol. 52, pp. 767–783. https://doi.org/10.1002/2017RS006256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Krasheninnikov.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasheninnikov, I.V., Leshchenko, L.N. Errors in Estimating of the F2-Layer Peak Parameters in Automatic Systems for Processing the Ionograms in the Vertical Radio Sounding of the Ionosphere under Low Solar Activity Conditions. Geomagn. Aeron. 61, 703–712 (2021). https://doi.org/10.1134/S0016793221050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221050078

Navigation