Skip to main content
Log in

Analysis of the Behavior of the Solar Wind Ion Flux in the Region of the Interplanetary Shock Overshoot

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The structure of the solar wind plasma flow downstream of the ramp of the interplanetary shock is studied based on the BMSW plasma spectrometer installed onboard the SPEKTR-R spacecraft. Particular attention is paid to the overshoot region, where correlated oscillations of the ion flux and magnetic field, which decaying with distance from the ramp, are observed. They are formed by two populations of ions: the inflowing solar wind and the beam of reflected ions. Based on an analysis of 26 crossings of interplanetary shock fronts, in which overshoots were observed in the value of the ion flux and the magnetic field, it is shown that overshoots form not only in supercritical shock, but also in those with Mach numbers that are less than or approach the value of the first critical Mach number. It is found that the formation and value of the overshoot amplitude in the structure of the shock front are significantly influenced by the angle between the normal to the shock front and the magnetic field vector ahead of the front, the Mach number, and the magnetic and plasma compression at the wave front. It is established that the oscillation wavelength determined from the magnetic field measurements onboard the WIND spacecraft, on average, coincides with the oscillation wavelength determined from the ion flux on the SPEKTR-R spacecraft, while the spatial scales of the oscillation-damping regions can greatly differ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bale, S.D., Balikhin, M.A., Horbury, T.S., et al., Quasi-perpendicular shock structure and processes, Space Sci. Rev., 2005, vol. 118, pp. 161–203. https://doi.org/10.1007/s11214-005-3827-0

    Article  Google Scholar 

  2. Balikhin, M.A., Zhang, T.L., Gedalin, M., Ganushkina, N.Y., and Pope, S.A., Venus Express observes a new type of shock with pure kinematic relaxation, Geophys. Res. Lett., 2008, vol. 35, L01103. https://doi.org/10.1029/2007GL032495

    Article  Google Scholar 

  3. Borodkova, N.L., Eselevich, V.G., Zastenker, G.N., Sapunova, O.V., Yermolaev, Yu.I., Šafránková, J., Nĕmeček, Z., and Přech, L., Fine structure of interplanetary shock front—results from BMSW experiment with high time resolution, J. Geophys. Res., 2019, vol. 124, no. 11, pp. 8191–8207. https://doi.org/10.1029/2018JA026255

    Article  Google Scholar 

  4. Borodkova, N.L., Sapunova, O.V., Eselevich, V.G., Zastenker, G.N., and Yermolaev, Yu.I., Comparison of magnetic and plasma overshoots of interplanetary shocks, Cosmic Res., 2020, vol. 58, no. 6, pp. 450–459.

    Article  Google Scholar 

  5. Burgess, D., Wilkinson, W.P., and Schwartz, S.J., Ion distributions and thermalization at perpendicular and quasi-perpendicular supercritical collisionless shocks, J. Geophys. Res., 1989, vol. 94, 8783. https://doi.org/10.1029/JA094iA07p08783

    Article  Google Scholar 

  6. Dimmock, A.P., Russell, C.T., Sagdeev, R.Z., et al., Direct evidence of nonstationary collisionless shocks in space plasmas, Sci. Adv., 2019, vol. 5, no. 2, eaau9926. https://doi.org/10.1126/sciadv.aau9926

  7. Edmiston, J.P. and Kennel, C.F., A parametric survey of the first critical Mach number for a fast MHD shock, J. Plasma Phys., 1984, vol. 32, no. 3, pp. 429–441.

    Article  Google Scholar 

  8. Eselevich, M.V. and Eselevich, V.G., Fractal structure of the heliospheric plasma sheet in the Earth’s orbit, Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, no. 3, pp. 326–336.

  9. Eselevich, V.G., Borodkova, N.L., Eselevich, M.V., Zastenker, G.N., Šafránková, J., Němeček, Z., and Přech, L., Fine structure of the interplanetary shock front according to measurements of the ion flux of the solar wind with high time resolution, Cosmic Res., 2017, vol. 55, no. 1, pp. 30–45. https://doi.org/10.1134/S0010952517010038

    Article  Google Scholar 

  10. Farris, M.H., Russell, C.T., and Thomsen, M.F., Magnetic structure of the low beta, quasi-perpendicular shock, J. Geophys. Res., 1993, vol. 98, pp. 15285–15294.

    Article  Google Scholar 

  11. Formisano, V., Collisionless shock waves in space and astrophysical plasmas, in Proc. ESA Workshop on Future Missions in Solar, Heliospheric and Space Plasma Physics, 1985, vol. ESA SP-235, p. 83.

  12. Gedalin, M., Friedman, Y., and Balikhin, M., Collisionless relaxation of downstream ion distributions in low-Mach number shocks, Phys. Plasmas, 2015, vol. 22, 072301. https://doi.org/10.1063/1.4926452

    Article  Google Scholar 

  13. Gedalin, M., Zhou, X., Russell, C.T., and Angelopoulos, V., Overshoot dependence on the cross-shock potential, Ann. Geophys., 2020, vol. 38, pp. 17–26. https://doi.org/10.5194/angeo-38-17-2020

    Article  Google Scholar 

  14. Gingell, I., Schwartz, S.J., Burgess, D., et al., MMS observations and hybrid simulations of surface ripples at a marginally quasi-parallel shock, J. Geophys. Res., 2017, vol. 77, pp. 11 003–11 017. https://doi.org/10.1002/2017JA024538

    Article  Google Scholar 

  15. Johlander, A., Schwartz, S.J., Vaivads, A., et al., Rippled quasiperpendicular shock observed by the magnetospheric multiscale spacecraft, Phys. Rev. Lett., 2016, vol. 117, 165101. https://doi.org/10.1103/PhysRevLett.117.165101

    Article  Google Scholar 

  16. Kajdič, P., Preisser, L., Blanco-Cano, X., Burgess, D., and Trotta, D., First observations of irregular surface of interplanetary shocks at ion scales by Cluster, Astrophys. J. Lett., 2019, vol. 874, id L13.

  17. Kennel, C.F., Edmiston, J.P., and Hada, T., A quarter century of collisionless shock research, Collisionless Shocks in Heliosphere: A Tutorial Review, Stone, R.G. and Tsurutani, B.T., Eds., Washington, D.C.: Am. Geophys. Union, 1985, vol. 34, pp. 1–36.

    Google Scholar 

  18. Krasnoselskikh, V., Balikhin, M., Walker, S.N., et al., The dynamic quasiperpendicular shock: Cluster discoveries, Space Sci. Rev., 2013, vol. 178, nos. 2–4, pp. 535–598.

    Article  Google Scholar 

  19. Lepping, R.P., Acuña, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., et al., The WIND magnetic field investigation, Space Sci. Rev., 1995, vol. 71, pp. 207–229.

    Article  Google Scholar 

  20. Leroy, M.M., Goodrich, C.C., Winske, D., Wu, C.S., and Papadopoulos, K., The structure of perpendicular bow shocks, J. Geophys. Res., 1982, vol. 87, pp. 5081–5094.

    Article  Google Scholar 

  21. Livesey, W.A., Kennel, C.F., and Russell, C.T., ISEE-1 and -2 observations of magnetic field strength overshoots in quasi-perpendicular bow shocks, Geophys. Res. Lett., 1982, vol. 9, pp. 1037–1040.

    Article  Google Scholar 

  22. Matthaeus, W.H., Weygand, J.M., and Dasso, S., Ensemble space–time correlation of plasma turbulence in the solar wind, Phys. Rev. Lett., 2016, vol. 116, 245101. https://doi.org/10.1103/PhysRevLett.116.245101

    Article  Google Scholar 

  23. Mazelle, C., Lembege, B., Morgenthaler, A., Meziane, K., Horbury, T.S., Génot, V., Lucek, E.A., and Dandouras, I., Self-reformation of the quasi-perpendicular shock: Cluster observations, AIP Conf. Proc., 2010, pp. 471–474. https://doi.org/10.1063/1.3395905

  24. Mellott, M.M. and Greenstadt, E.W., The structure of oblique subcritical bow shocks: ISEE-1 and 2 observations, J. Geophys. Res., 1984, vol. 89, pp. 2151–2161.

    Article  Google Scholar 

  25. Mellott, M.M. and Livesey, W.A., Shock overshoots revisited, J. Geophys. Res., 1987, vol. 92, pp. 13661–13665.

    Article  Google Scholar 

  26. Nĕmeček, Z., Šafránková, J., Goncharov, O., Přech, L., and Zastenker, G., Ion scales of quasi-perpendicular low-Mach-number interplanetary shocks, Geophys. Res. Lett., 2013, vol. 40, no. 16, pp. 4133–4137. https://doi.org/10.1002/grl.50814

    Article  Google Scholar 

  27. Ofman, L., Balikhin, M., Russell, C.T., and Gedalin, M., Collisionless relaxation of ion distributions downstream of laminar quasi-perpendicular shocks, J. Geophys. Res., 2009, vol. 114, A09106. https://doi.org/10.1029/2009JA014365

    Article  Google Scholar 

  28. Omidi, N., Blanco-Cano, X., and Russell, C.T., Macrostructure of collisionless bow shocks: 1. Scale lengths, J. Geophys. Res., 2005, vol. 110, A12212. https://doi.org/10.1029/2005JA011169

    Article  Google Scholar 

  29. Ramiréz Vélez, J.C., Blanco-Cano, X., Aguilar-Rodriguez, E., Russell, C.T., Kajdič, P., Jian, L.K., and Luhmann, J.G., Whistler waves associated with weak interplanetary shocks, J. Geophys. Res., 2012, vol. 117, A11103. https://doi.org/10.1029/2012JA017573

    Article  Google Scholar 

  30. Russell, C.T. and Greenstadt, E.W., Initial ISEE magnetometer results—shock observation, Space Sci. Rev., 1979, vol. 23, pp. 3–37.

    Article  Google Scholar 

  31. Russell, C.T., Hoppe, M.M., and Livesey, W.A., Overshoots in planetary bow shocks, Nature, 1982, vol. 296, pp. 45–48.

    Article  Google Scholar 

  32. Russell, C.T., Jian, L.K., Blanco-Cano, X., and Luhmann, J.G., STEREO observations of upstream and downstream waves at low Mach number shocks, Geophys. Res. Lett., 2009, vol. 36, 03106. https://doi.org/10.1029/2008GL036991

    Article  Google Scholar 

  33. Šafránková, J., Nĕmeček, Z., Přech, L., et al., Fast Solar Wind Monitor (BMSW): Description and first results, Space Sci. Rev., 2013, vol. 175, pp. 165–182. https://doi.org/10.1007/s11214-013-9979-4

    Article  Google Scholar 

  34. Sckopke, N., Paschmann, G., Bame, S.J., Gosling, J.T., and Russell, C.T., Evolution of ion distributions across the nearly perpendicular bow shock-specularly and non-specularly reflected-gyrating ions, J. Geophys. Res., 1983, vol. 88, pp. 6121–6136. https://doi.org/10.1016/0273-1177(94)00106-B

    Article  Google Scholar 

  35. Scudder, J.D., Mangeney, A., Lacombe, C., Harvey, C.C., Aggson, T.L., Anderson, R.R., Gosling, J.T., Paschmann, G., and Russell, C.T., The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave: 1. Rankine–Hugoniot geometry, currents, and stationarity, J. Geophys. Res., 1986, vol. 91, pp. 11019–11052. https://doi.org/10.1029/JA091iA10p11019

    Article  Google Scholar 

  36. Weygand, J.M., Matthaeus, W.H., Kivelson, M.G., and Dasso, S., Magnetic correlation functions in the slow and fast solar wind in the Eulerian reference frame, J. Geophys. Res., 2013, vol. 118, pp. 3995–4004. https://doi.org/doi:10.1002/jgra.50398.

    Article  Google Scholar 

  37. Wilson, L.B., Koval, A., Szabo, A., et al., Observations of electromagnetic whistler precursors at supercritical interplanetary shocks, Geophys. Res. Lett., 2012, vol. 39, L08109. https://doi.org/10.1029/2012GL051581

    Article  Google Scholar 

  38. Wilson, L.B., Koval, A., Szabo, A., Stevens, M.L., Kasper, J.C., Cattell, C.A., and Krasnoselskikh, V.V., Revisiting the structure of low-Mach number, low-beta, quasi-perpendicular shocks, J. Geophys. Res., 2017, vol. 122, no. 9, pp. 9115–9133. https://doi.org/10.1002/2017JA024352

    Article  Google Scholar 

  39. Zastenker, G.N., Šafránková, J., Nĕmeček, Z., et al., Fast measurements of parameters of the solar wind using the BMSW instrument, Cosmic Res., 2013, vol. 51, no. 2, pp. 78–89. https://doi.org/10.1134/S0010952513020081

    Article  Google Scholar 

Download references

7. ACKNOWLEDGMENTS

The authors are grateful to the Coordinated Data Analysis Web (CDAWeb, https://cdaweb.sci.gsfc.nasa.gov) of the National Aeronautics and Space Administration (NASA) and to the National Oceanic and Atmospheric Administration (NOAA, (https://www.ngdc.noaa.gov/dscovr) for the opportunity to use data on the plasma parameters and magnetic field measured onboard the WIND and DSCOVR spacecrafts.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00177.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. L. Borodkova or O. V. Sapunova.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodkova, N.L., Sapunova, O.V., Eselevich, V.G. et al. Analysis of the Behavior of the Solar Wind Ion Flux in the Region of the Interplanetary Shock Overshoot. Geomagn. Aeron. 61, 666–677 (2021). https://doi.org/10.1134/S0016793221050042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221050042

Navigation