Skip to main content
Log in

Forbush Effects Created by Coronal Mass Ejections with Magnetic Clouds

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In this paper, we study the effect of magnetic clouds on variations in the cosmic ray density recorded by neutron monitors. The statistical patterns and characteristic features of such events are distinguished from data on 252 Forbush effects caused by interplanetary disturbances containing magnetic clouds. The behavior of the main parameters of solar wind, cosmic rays, and geomagnetic activity during the passage of magnetic clouds past the Earth, as well as the characteristic features of the internal structure of magnetic clouds, are discussed. It is shown that the cosmic ray variations are closely related to the maximal parameters of the solar wind and the interplanetary magnetic field inside the magnetic clouds. It is established that the maximal velocity inside the magnetic cloud is most often registered at the beginning of the event, while the maximal value of the interplanetary magnetic field is registered both at the beginning and in the middle of the event by the time distribution of the solar wind maximal parameters. It is also found that there is a sufficiently close correlation of the variations of cosmic ray density in a magnetic cloud with its size expressed in the hyroradii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Badruddin, Yadav, R.S., and Yadav, N.R., Influence of magnetic clouds on cosmic ray intensity variation, Sol. Phys., 1986, vol. 105, no. 2, pp. 413–428. https://doi.org/10.1007/BF00172057

  2. Belov, A.V., Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena, in Proc. IAU Symposium, 2009, vol. 257, pp. 439–450. https://doi.org/10.1017/S1743921309029676

  3. Belov, A.V., Abunin, A.A., Abunina, M.A., Eroshenko, E.A., Oleneva, V.A., and Yanke, V.G., Density variations of galactic cosmic rays in magnetic clouds, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 4, pp. 430–441. https://doi.org/10.1134/S0016793215040027

  4. Belov, A.V., Eroshenko, E.A., Yanke, V.G., Oleneva, V.A., Abunina, M.A., and Abunin, A.A., Global survey method for the world network of neutron monitors, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 3, pp. 356–372. https://doi.org/10.1134/S0016793218030039

  5. Bothmer, V. and Schwenn, R., Eruptive prominences as sources of magnetic clouds in the solar wind, Space Sci. Rev., 1994, vol. 70, pp. 215–220. https://doi.org/10.1007/BF00777872

    Article  Google Scholar 

  6. Bothmer, V. and Schwenn, R., The structure and origin of magnetic clouds in the solar wind, Ann. Geophys., 1998, vol. 16, pp. 1–24. https://doi.org/10.1007/s00585-997-0001-x

    Article  Google Scholar 

  7. Burlaga, L., Magnetic clouds, in Physics of the Inner Heliosphere II. Physics and Chemistry in Space, Schwenn R. and Marsch, E., Eds., Berlin: Springer, 1991, vol. 21, pp. 1–22. https://doi.org/10.1007/978-3-642-75364-0_1.

  8. Burlaga, L.F. and Behannon, K.W., Magnetic clouds: Voyager observations between 2 and 4 AU, Sol. Phys., 1982, vol. 81, pp. 181–192. https://doi.org/10.1007/BF00151989

    Article  Google Scholar 

  9. Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res., 1981, vol. 86, pp. 6673–6684. https://doi.org/10.1029/JA086iA08p06673

    Article  Google Scholar 

  10. Cane, H.V., Coronal mass ejections and Forbush decreases, Space Sci. Rev., 2000, vol. 93, pp. 55–77. https://doi.org/10.1023/A:1026532125747

    Article  Google Scholar 

  11. Dumbović, M., Vršnak, B., Guo, J., et al., Evolution of coronal mass ejections and the corresponding Forbush decreases: Modeling vs. multi-spacecraft observations, Sol. Phys., 2020, vol. 295, id 104. https://doi.org/10.1007/s11207-020-01671-7

  12. Echer, E., Alves, M.V., and Gonzalez, W.D., A statistical study of magnetic cloud parameters and geoeffectiveness, J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, no. 10, pp. 839–852. https://doi.org/10.1016/j.jastp.2005.02.010

    Article  Google Scholar 

  13. Forbush, S.E., On the effects in cosmic-ray intensity observed during the recent magnetic storm, Phys. Rev., 1937, vol. 51, pp. 1108–1109. https://doi.org/10.1103/PhysRev.51.1108.3

    Article  Google Scholar 

  14. Forbush, S., On cosmic-ray effects associated with magnetic storms, Terr. Magn. Atmos. Electr., 1938, vol. 43, pp. 203–218. https://doi.org/10.1029/TE043i003p00203

    Article  Google Scholar 

  15. Goldstein, H., On the field configuration in magnetic clouds, in Solar Wind Five, Neugebauer, M., Ed., NASA Conf. Publ., 1983, pp. 731–733.

    Google Scholar 

  16. Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., and Bougeret, J.-L., Interplanetary shocks lacking type ii radio bursts, Astrophys. J., 2010, vol. 710, pp. 1111–1126. https://doi.org/10.1088/0004-637X/710/2/1111

    Article  Google Scholar 

  17. Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., and Mäkelä, P., Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 11, pp. 9221–9245. https://doi.org/10.1002/2015JA021446

    Article  Google Scholar 

  18. Gosling, J.T., Bame, S.J., McComas, D.J., and Phillips, J.L., Coronal mass ejections and large geomagnetic storms, Geophys. Res. Lett., 1990, vol. 17, no. 7, pp. 901–904. https://doi.org/10.1029/GL017i007p00901

    Article  Google Scholar 

  19. Gosling, J.T., McComas, D.J., Phillips, J.L., and Bame, J., Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 1991, vol. 96, pp. 7831–7839. https://doi.org/10.1029/91JA00316

    Article  Google Scholar 

  20. Huttunen, K., Schwenn, R., Bothmer, V., and Koskinen, H., Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23, Ann. Geophys., 2005, vol. 23, pp. 625–641. https://doi.org/10.5194/angeo-23-625-2005

    Article  Google Scholar 

  21. Klein, L. and Burlaga, L., Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 1982, vol. 87, no. A2, pp. 613–624. https://doi.org/10.1029/JA087iA02p00613

    Article  Google Scholar 

  22. Kumar, A. and Badruddin, Interplanetary coronal mass ejections, associated features, and transient modulation of galactic cosmic rays, Sol. Phys., 2014, vol. 289, pp. 2177–2205. https://doi.org/10.1007/s11207-013-0465-7

    Article  Google Scholar 

  23. Kuwabara, T., Bieber, J.W., Evenson, P., et al., Determination of interplanetary coronal mass ejection geometry and orientation from ground-based observations of galactic cosmic rays, J. Geophys. Res., 2009, vol. 114, no. A5, A05109. https://doi.org/10.1029/2008JA013717

    Article  Google Scholar 

  24. Lepping, R.P., Jones, J.A., and Burlaga, L.F., Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 1990, vol. 95, no. A8, pp. 11957–11965. https://doi.org/10.1029/JA095iA08p11957

    Article  Google Scholar 

  25. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., and Szabo, A., Model fitting of wind magnetic clouds for the period 2004–2006, Sol. Phys., 2020, vol. 295, id 83. https://doi.org/10.1007/s11207-020-01630-2

  26. Li, Y., Luhmann, J.G., and Lynch, B.J., Magnetic clouds: Solar cycle dependence, sources, and geomagnetic impacts, Sol. Phys., 2018, vol. 293, id 135. https://doi.org/10.1007/s11207-018-1356-8

  27. Lockwood, J.A., Webber, W.R., and Debrunner, H., Forbush decreases and interplanetary magnetic field disturbances: association with magnetic clouds, J. Geophys. Res., 1991, vol. 96, no. A7, pp. 11587–11604. https://doi.org/10.1029/91JA01012

    Article  Google Scholar 

  28. Lynch, B.J., Zurbuchen, T.H., and Fisk, L.A., Internal structure of magnetic clouds: Plasma and composition, J. Geophys. Res., 2003, vol. 108, no. A6, 1239. https://doi.org/10.1029/2002JA009591

    Article  Google Scholar 

  29. Marubashi, K. and Lepping, R., Long-duration magnetic clouds: A comparison of analyses using torus- and cylinder-shaped flux rope models, Ann. Geophys., 2007, vol. 25, no. 11, pp. 2453–2477. https://doi.org/10.5194/angeo-25-2453-2007

    Article  Google Scholar 

  30. Masías-Meza, J.J., Dasso, S., Démoulin, P., Rodriguez, L., and Janvier, M., Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays, Astron. Astrophys., 2016, vol. 592, id A118. https://doi.org/10.1051/0004-6361/201628571

  31. Melkumyan, A.A., Belov, A.V., Abunina, M.A., Abunin, A.A., Eroshenko, E.A., Oleneva, V.A., and Yanke, V.G., Behavior of the speed and temperature of the solar wind during interplanetary disturbances creating Forbush decreases, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 5, pp. 521–529. https://doi.org/10.1134/S0016793220040106

  32. Melkumyan, A.A., Belov, A.V., Abunina, M.A., Abunin, A.A., Eroshenko, E.A., Yanke, V.G., and Oleneva, V.A., Solar wind temperature–velocity relationship over the last five solar cycles and Forbush decreases associated with different types of interplanetary disturbance, Mon. Not. R. Astron. Soc., 2021, vol. 500, pp. 2786–8797. https://doi.org/10.1093/mnras/staa3366

    Article  Google Scholar 

  33. Mulligan, T. and Russell, C.T., Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies, J. Geophys. Res., 2001, vol. 106, pp. 10 581–10 596. https://doi.org/10.1029/2000JA900170

    Article  Google Scholar 

  34. Panasyuk, M.I., Kuznetsov, S.N., Lazutin, L.L., et al., Magnetic storms in October 2003, Cosmic Res., 2004, vol. 42, no. 5, pp. 489–535. https://doi.org/10.1023/B:COSM.0000046230.62353.61

    Article  Google Scholar 

  35. Papaioannou, A., Belov, A., Abunina, M., Eroshenko, E., Abunin, A., Anastasiadis, A., Patsourakos, S., and Mavromichalaki, H., Interplanetary coronal mass ejections as the driver of non-recurrent Forbush decreases, Astrophys. J., 2020, vol. 890, id 101. https://doi.org/10.3847/1538-4357/ab6bd1

  36. Parnahaj, I. and Kudela, K., Forbush decreases at a middle latitude neutron monitor: Relations to geomagnetic activity and to interplanetary plasma structures, Astrophys. Space Sci., 2015, vol. 359, id 35. https://doi.org/10.1007/s10509-015-2484-3

  37. Petukhova, A.S., Petukhov, I.S., and Petukhov, S.I., Forbush decrease characteristics in a magnetic cloud, Space Weather, 2020, vol. 18, id e2020SW002616. https://doi.org/10.1029/2020SW002616

  38. Richardson, I.G., Solar wind stream interaction regions throughout the heliosphere, Living Rev. Sol. Phys., 2018, vol. 15, id 1. https://doi.org/10.1007/s41116-017-0011-z

  39. Richardson, I.G. and Cane, H.V., The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation, Geophys. Res. Lett., 2004, vol. 31, id L18804. https://doi.org/10.1029/2004GL020958

  40. Richardson, I.G. and Cane, H.V., Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties, Sol. Phys., 2010a, vol. 264, pp. 189–237. https://doi.org/10.1007/s11207-010-9568-6

    Article  Google Scholar 

  41. Richardson, I.G. and Cane, H.V., Interplanetary coronal mass ejections during solar cycle 23, AIP Conf. Proc., 2010b, vol. 1216, pp. 683–686. https://doi.org/10.1063/1.3395959

    Article  Google Scholar 

  42. Richardson, I.G. and Cane, H.V., Galactic cosmic ray intensity response to interplanetary coronal mass ejections/magnetic clouds in 1995–2009, Sol. Phys., 2011, vol. 270, pp. 609–627. https://doi.org/10.1007/s11207-011-9774-x

    Article  Google Scholar 

  43. Ruffenach, A., Lavraud, B., Farrugia, C.J., et al., Statistical study of magnetic cloud erosion by magnetic reconnection, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 43–60. https://doi.org/10.1002/2014JA020628

    Article  Google Scholar 

  44. Sun, W., Dryer, M., Fry, C.D., Deehr, C.S., Smith, Z., Akasofu, S.-I., Kartalev, M.D., and Grigorov, K.G., Real-time forecasting of ICME shock arrivals at L1 during the “April Fool’s Day” epoch: 28 March–21 April 2001, Ann. Geophys., 2002, vol. 20, pp. 937–945. https://doi.org/10.5194/angeo-20-937-2002

    Article  Google Scholar 

  45. Zhang, G. and Burlaga, L., Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases, J. Geophys. Res., 1988, vol. 93, no. A4, pp. 2511–2518. https://doi.org/10.1029/JA093iA04p02511

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the teams of the global network of CR stations providing data from the continuous registration of the neutron component: (http://cr0.izmiran.ru/thankyou/our_acknowledgment.pdf), and we thank the Neutron Monitor Database (www.nmdb.eu). The work is based on experimental data from the Unique Scientific Setting, the Russian National Cosmic Ray Station Network.

Funding

The work of M.A. Abunina, A.A. Abunin, and A.V. Belov was supported by the Russian Scientific Foundation, grant no. 20-72-10 023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Abunina.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abunina, M.A., Belov, A.V., Shlyk, N.S. et al. Forbush Effects Created by Coronal Mass Ejections with Magnetic Clouds. Geomagn. Aeron. 61, 678–687 (2021). https://doi.org/10.1134/S0016793221050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221050029

Navigation