Skip to main content
Log in

Equatorial Plasma Bubbles: Variability of the Latitudinal Distribution with Altitude

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Ionosphere plasma irregularities known as equatorial plasma bubbles are the subject of this research. The variability of the latitudinal distributions of the occurrence probability of the bubbles with increasing the observation altitude is studied. For this purpose, the data from the ISS-b (~972–1220 km), ROCSAT-1 (~600 km), and AE-E (~300 km, ~350–475 km) satellites at the different orbital altitudes were used. Different seasons in the years of the increased and maximal solar activity were considered. (1) The latitudinal distributions of the equatorial plasma bubbles at the altitudes of their generation are shown to be basically the same at the altitudes of the topside ionosphere (~972–1220 km). This characteristic was revealed, because the bubbles at these altitudes were detected not as the depletions in the total ion or electron density but as the structures with depleted He+ density. (2) In addition to the central (equatorial) maximum, the additional mid-latitude maxima were found to develop in the latitudinal distributions of the occurrence probability of the bubbles with increasing the observation altitude (from ~600 to ~1000 km). This feature is the most pronounced in both hemispheres during the equinox and in the winter hemispheres. (3) The positions of the mid-latitude maxima were found to shift towards the equator with increasing the observation altitude. This is in good agreement with the spatial (latitudinal–altitudinal) course of the magnetic flux tubes along which the plasma bubbles that reached their ceiling altitudes are “stretched”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abdu, M.A., Outstanding problems in the equatorial ionosphere–thermosphere electrodynamics relevant to spread F, J. Atmos. Terr. Phys., 2001, vol. 63, no. 9, pp. 869–884.

    Article  Google Scholar 

  2. Abdu, M.A., de Medeiros, R.T., Sobral, J.H.A., et al., Spread F plasma bubble vertical rise velocities determined from spaced ionosonde observations, J. Geophys. Res., 1983, vol. 88, pp. 9197–9204.

    Article  Google Scholar 

  3. Abdu, M.A., Sobral, J.H.A., and Batista, I.S., Equatorial spread F statistics in the American longitudes: Some problems relevant to ESF description in the IRI scheme, Adv. Space Res., 2000, vol. 25, pp. 113–124.

    Article  Google Scholar 

  4. Aggson, T.L., Maynard, N.C., Hanson, W.B., et al., Electric field observations of equatorial bubbles, J. Geophys. Res., 1992, vol. 97, pp. 2997–3009.

    Article  Google Scholar 

  5. Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.

  6. Burke, W.J., Donatelli, D.E., Sagalyn, R.C., et al., Low density regions observed at high altitudes and their connection with equatorial spread F, Planet. Space Sci., 1979, vol. 27, pp. 593–601.

    Article  Google Scholar 

  7. Chandra, S., The equatorial helium ion trough and the geomagnetic anomaly, J. Atmos. Terr. Phys., 1975, vol. 37, no. 2, pp. 359–367.

    Article  Google Scholar 

  8. Chandra, S., Troy, B.E., Jr., Donley, J.L., et al., “OGO-4" observations of ion composition and temperatures in the topside ionosphere, J. Geophys. Res.: Space, 1970, vol. 75, no. 19, pp. 3867–3878.

    Article  Google Scholar 

  9. Gentile, L.C., Burke, W.J., and Rich, F.J., A climatology of equatorial plasma bubbles from DMSP 1989–2004, Radio Sci., 2006, vol. 41, RS5S21. https://doi.org/10.1029/2005RS003340

    Article  Google Scholar 

  10. Heelis, R.A., Hanson, W.B., and Bailey, G.J., Distributions of He+ at middle and equatorial latitudes during solar maximum, J. Geophys. Res., 1990, vol. 95, no. A7, pp. 10313–10320.

    Article  Google Scholar 

  11. Huba, J.D., Joyce, G., and Krall, J., Three-dimensional equatorial spread F modeling, Geophys. Res. Lett., 2008, vol. 35, L10102. https://doi.org/10.1029/2008GL033509

    Article  Google Scholar 

  12. Hysell, D.L. and Kudeki, E., Collisional shear instability in the equatorial F region ionosphere, J. Geophys. Res., 2004, vol. 109, A11301. https://doi.org/10.1029/2004JA010636

    Article  Google Scholar 

  13. Kil, H. and Heelis, R.A., Global distribution of density irregularities in the equatorial ionosphere, J. Geophys. Res., 1998, vol. 103, no. A1, pp. 407–417.

    Article  Google Scholar 

  14. Krall, J., Huba, J.D., Ossakow, S.L., and Joyce, G., Why do equatorial ionospheric bubbles stop rising?, Geophys. Res. Lett., 2010, vol. 37, L09105. https://doi.org/10.1029/2010GL043128

    Article  Google Scholar 

  15. Kudeki, E. and Bhattacharyya, S., Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F, J. Geophys. Res., 1999, vol. 104, no. 12, pp. 28163–28170.

    Article  Google Scholar 

  16. Kudeki, E., Akgiray, A., Milla, M.A., Chau, J.L., and Hysell, D.L., Equatorial spread-F initiation: Post-sunset vortex, thermospheric winds, gravity waves, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, nos. 17–18, pp. 2416–2427.

    Article  Google Scholar 

  17. Maryama, T. and Matuura, N., Global distribution of occurrence probability of spread echoes based on ISS-B observation, J. Radio Res. Lab., 1980, vol. 27, no. 124, pp. 201–216.

    Google Scholar 

  18. McClure, J.P., Hanson, W.B., and Hoffman, J.F., Plasma bubbles and irregularities in the equatorial ionosphere, J. Geophys. Res., 1977, vol. 82, no. 19, pp. 2650–2656.

    Article  Google Scholar 

  19. Ossakov, S.L. and Chaturvedi, P.K., Morphological studies of rising equatorial spread F bubbles, J. Geophys. Res., 1978, vol. 83, no. A5, pp. 2085–2090.

    Article  Google Scholar 

  20. Ott, E., Theory of Rayleigh–Taylor bubbles in the equatorial ionosphere, J. Geophys. Res., 1978, vol. 83, no. A5, pp. 2066–2070.

    Article  Google Scholar 

  21. RRL, Summary Plots of Ionospheric Parameters Obtained from Ionosphere Sounding Satellite-B, Tokyo: Radio Res. Lab. Min. Posts Telecom., 1983, vols. 1–3.

  22. RRL, Summary Plots of Ionospheric Parameters Obtained from Ionosphere Sounding Satellite-B, Special Report, Tokyo: Radio Res. Lab. Min. Posts Telecom., 1985, vol. 4.

  23. Sidorova, L.N., Plasma bubble phenomenon in the topside ionosphere, Adv. Space Res., 2007, vol. 39, no. 8, pp. 1284–1291. https://doi.org/10.1016/j.asr.2007.03.067

    Article  Google Scholar 

  24. Sidorova, L.N., Equatorial plasma bubbles at altitudes of the topside ionosphere, Geomagn. Aeron. (Engl. Transl.), 2008a, vol. 48, no. 1, pp. 56–65.

  25. Sidorova, L.N., Topside plasma bubbles, seen as He+ density depletions, in Fundamental Space Research. Conference Proceedings, Sunny Beach, Bulgaria, 2008b, p. 238.

  26. Sidorova, L.N. and Filippov, S.V., Topside ionosphere He+ density depletions: Seasonal/longitudinal occurrence probability, J. Atmos. Sol.-Terr. Phys., 2012, vol. 86, pp. 83–91. https://doi.org/10.1016/j.jastp.2012.06.013

    Article  Google Scholar 

  27. Sidorova, L.N. and Filippov, S.V., Longitudinal statistics of plasma bubbles observed as He+ density depletions at altitudes of the topside ionosphere, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 1, pp. 60–72.

  28. Sidorova, L.N. and Filippov, S.V., Plasma bubble registration at altitudes of the topside ionosphere: Numerical evaluations, Geomagn. Aeron. (Engl. Transl.), 2014a, vol. 54, no. 3, pp. 329–336.

  29. Sidorova, L.N. and Filippov, S.V., Plasma bubbles in the topside ionosphere: Estimations of the survival possibilities, J. Atmos. Sol.-Terr. Phys., 2014b, vol. 119, pp. 35–41. https://doi.org/10.1016/j.jastp.2014.06.013

    Article  Google Scholar 

  30. Sidorova, L.N. and Filippov, S.V., Equatorial plasma bubbles: Effect of thermospheric winds modulated by DE3 tidal waves, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 2, pp. 214–222.

  31. Sidorova, L.N. and Filippov, S.V., Wind preparation of the generation of equatorial plasma “bubbles”, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 3, pp. 312–317. https://doi.org/10.1134/S0016793219030137

  32. Su, S.-Y., Liu, C.H., Ho, H.H., et al., Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions, J. Geophys. Res., 2006, vol. 111, A06305. https://doi.org/10.1029/2005JA011330

    Article  Google Scholar 

  33. Taylor, H.A., Jr., Mayr, H.G., and Brinton, H.C., Observations of hydrogen and helium ions during a period of rising solar activity, Space Res., 1970, vol. 10, pp. 663–678.

    Google Scholar 

  34. Tsunoda, R.T., Magnetic-field-aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere, J. Atmos. Terr. Phys., 1980, vol. 42, pp. 743–752.

    Article  Google Scholar 

  35. Wilford, C.R., Moffett, R.J., Rees, J.M., Bailey, G.J., and Gonzalez, S.A., Comparison of the He+ layer observed over Arecibo during solar maximum and solar minimum with CTIP model results, J. Geophys. Res., 2003, vol. 108, no. A12, pp. 1452–1461. https://doi.org/10.1029/2003JA009940

    Article  Google Scholar 

  36. Woodman, R.F. and La Hoz, C., Radar observations of F‑region equatorial irregularities, J. Geophys. Res., 1976, vol. 81, pp. 5447–5466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Sidorova.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorova, L.N. Equatorial Plasma Bubbles: Variability of the Latitudinal Distribution with Altitude. Geomagn. Aeron. 61, 508–519 (2021). https://doi.org/10.1134/S0016793221040162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221040162

Navigation