Skip to main content
Log in

Analysis of the TEC Prediction Performance of IRI-2016 Model in the Mid-Latitude Region

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This paper investigates the performance of International Reference Ionosphere (IRI-2016) in predicting the variation of the Total Electron Content (TEC) over six IGS stations in the mid-latitude region. Three of the stations are in the northern hemisphere and three in the southern hemisphere. IRI-2016 TEC values are estimated using various Ne Topside, Ne F-peak and F-peak height options during different geomagnetic and solar activity conditions. Three different ionospheric conditions are considered; geomagnetic active-solar quiet days (June 23, 2015; October 7, 2015), geomagnetic-solar quiet days (May 23, 2015; July 19, 2015) and geomagnetic quiet-solar active days (July 8, 2014; December 18, 2014). Model derived TEC values are compared with the GPS-TEC data, which is used as a reference value. The overall results show that TEC predictions using IRI-2001 (Ne-Topside) and URSI (Ne F-peak) options provide better agreement with GPS-TEC values for the summer days. Whereas IRI01-corr—NeQuick (Ne-Topside) with CCIR (Ne F-peak) options predict well for the winter days. Besides, evaluation of the results reveals insignificant differences (<1 TECU) among three F-peak height option (AMTB-2013, SHU-2015 and BSE-1979) solutions. Furthermore, regardless of which IRI parameter is used during active days, the differences between IRI-TEC and GPS-TEC reach high values at some stations at some time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Acharya, R. and Majumdar, S., Comparison of observed ionospheric vertical TEC over the sea in Indian region with IRI-2016 model, Adv. Space Res., 2019, vol. 63, no. 6, pp. 1892–1904. https://doi.org/10.1016/j.asr.2018.10.049

    Article  Google Scholar 

  2. Alcay, S., Yigit, C.O., Seemala, G., and Ceylan, A., GPS-based ionosphere modeling: A brief review, Fresenius Environ. Bull., 2014, vol. 23, no. 3a, pp. 815–824.

    Google Scholar 

  3. Alcay, S., Oztan, G., and Selvi, H.Z., Comparison of IRI_PLAS and IRI_2012 model predictions with GPS_TEC measurements in different latitude regions, Ann. Geophys., 2017, vol. 60, no. 5. https://doi.org/10.4401/ag-7311

  4. Arikan, F., Erol, C.B., and Arikan, O., Regularized estimation of vertical total electron content from Global Positioning System data, J. Geophys. Res., 2003, vol. 108, no. A12, 1469. https://doi.org/10.1029/2002JA009605

    Article  Google Scholar 

  5. Arikan, F., Erol, C.B., and Arikan, O., Regularized estimation of vertical total electron content from GPS data for a desired time period, Radio Sci., 2004, vol. 39, no. RS6012. https://doi.org/10.1029/2004RS003061

  6. Bilitza, D., IRI the international standard for the ionosphere, Adv. Radio Sci., 2018, vol. 16, pp. 1–11. https://doi.org/10.5194/ars-16-1-2018

    Article  Google Scholar 

  7. Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., and Huang, X., International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions, Space Weather, 2017, vol. 15, pp. 418–429. https://doi.org/10.1002/2016SW001593

    Article  Google Scholar 

  8. Cherniak, I. and Zakharenkova, I., Evaluation of the IRI-2016 and NeQuick electron content specification by COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations, Adv. Space Res., 2019, vol. 63, no. 6, pp. 1845–1859. https://doi.org/10.1016/j.asr.2018.10.036

    Article  Google Scholar 

  9. Mengistua, E., Damtie, B., Moldwin, M.B., and Nigussie, M., Comparison of GPS-TEC measurements with NeQuick2 and IRI model predictions in the low latitude East African region during varying solar activity period (1998 and 2008–2015), Adv. Space Res., 2018, vol. 61, no. 6, pp. 1456–1475. https://doi.org/10.1016/j.asr.2018.01.009

    Article  Google Scholar 

  10. Nayir, H., Arikan, F., Arikan, O., and Erol, C.B., Total electron content estimation with Reg-Est, J. Geophys. Res.: Space Phys., 2007, vol. 112, no. A11. https://doi.org/10.1029/2007JA012459

  11. Nohutcu, M., Karslioglu, M.O., and Schmidt, M., B-Spline modeling of VTEC over Turkey using GPS observations, J. Atmos. Sol.-Terr. Phys., 2010, vol. 72, nos. 7–8, pp. 617–624. https://doi.org/10.1016/j.jastp.2010.02.022

    Article  Google Scholar 

  12. Patel, N.C., Karia, S.P., and Pathak, K.N., Evaluation of the improvement of IRI-2016 over IRI-2012 at the India low-latitude region during the ascending phase of cycle 24, Adv. Space Res., 2019, vol. 63, no. 6, pp. 1860–1881. https://doi.org/10.1016/j.asr.2018.10.008

    Article  Google Scholar 

  13. Pignalberi, A., Pezzopane, M., Tozzi, R., Michelis, P.D., and Coco, I., Comparison between IRI and preliminary Swarm Langmuir probe measurements during the St. Patrick storm period, Earth, Planets Space, 2016, vol. 68, no. 93. https://doi.org/10.1186/s40623-016-0466-5

  14. Sharma, S.K., Ansari, K., and Panda, S.K., Analysis of ionospheric TEC variation over Manama, Bahrain, and comparison with IRI-2012 and IRI-2016 models, Arabian J. Sci. Eng., 2018, vol. 43, pp. 3823–3830. https://doi.org/10.1007/s13369-018-3128-z

    Article  Google Scholar 

  15. Shi, C., Zhang, T., Wang, C., Wang, Z., and Fan, L., Comparison of IRI-2016 model with IGS VTEC maps during low and high solar activity period, Results Phys., 2019, vol. 12, pp. 555–561. https://doi.org/10.1016/j.rinp.2018.12.022

    Article  Google Scholar 

  16. Tariku, Y.A., Testing the improvement of performance of the IRI model in the estimation of TEC over the mid-latitude American regions, Adv. Space Res., 2019a, vol. 63, no. 7, pp. 2066–2074. https://doi.org/10.1016/j.asr.2018.12.009

    Article  Google Scholar 

  17. Tariku, Y.A., Assessment of improvement of the IRI model over Ethiopia for the modeling of the variability of TEC during the period 2013–2016, Adv. Space Res., 2019b, vol. 63, no. 5, pp. 1634–1645. https://doi.org/10.1016/j.asr.2018.11.014

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to express his gratitude to the IRI working group for providing IRI_2016 model. The author thanks the IONOLAB group for providing ionolabtecv1.30 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Alcay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salih Alcay Analysis of the TEC Prediction Performance of IRI-2016 Model in the Mid-Latitude Region. Geomagn. Aeron. 61, 600–618 (2021). https://doi.org/10.1134/S0016793221040149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221040149

Keywords:

Navigation