Skip to main content
Log in

Seasonal and Long-Term Changes in the Intensity of O2(b1Σ) and OH(X2Π) Airglow in the Mesopause Region

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Spectral observations of the mesopause airglow at the Zvenigorod Scientific Station have been used to obtain the midnight emission intensities of molecular oxygen (О2А(0-1) band) and hydroxyl (OH (6-2) band) for 2000–2019. Spectral analysis of the variations has made it possible to determine the annual variability for each emission, which is described by the sum of four harmonics. The time lag in seasonal variations of the hydroxyl emission relative to variations in the emission of molecular oxygen is 5–18 days. Long-term changes in the average annual emission intensities have been studied. The linear trend (–3.3 ± 0.3% per year for О2А(0-1) and –2.6 ± 0.2% per year for ОН(6-2)), the dependences on the 11-year solar cycle (response to changes in the Lyman-alpha solar radiation (18.5 ± 3.3% per 1011 photons cm–2 s–1 for О2А(0-1) and 10.5 ± 2.5% per 1011 photons cm–2 s–1 for OH (6-2)) and the 22-year solar cycle (response to changes in the solar magnetic field strength (23.2 ± 4.5% per 100 μТ for О2А(0-1) and 12.1 ± 3.5% per 100 μТ for ОН (6-2)), as well as quasi-eight-year oscillations have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Dalin, P., Perminov, V., Pertsev, N., and Romejko, V., Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds, J. Geophys. Res.: Atmos., 2020, vol. 125, e2019JD030814. https://doi.org/10.1029/2019JD030814

  2. Feliks, Y., Ghil, M., and Robertson, A.W., Oscillatory climate modes in the Eastern Mediterranean and their synchronization with the North Atlantic Oscillation, J. Clim., 2010, vol. 23, no. 15, pp. 4060–4079.

    Article  Google Scholar 

  3. Fishkova, L.M., Nochnoe izluchenie sredneshirotnoi verkhnei atmosfery Zemli (Night Airglow of the Earth’s Midlatitude Upper Atmosphere), Tbilisi: Metsniereba, 1983.

  4. Gamiz-Fortis, S., Pozo-Vazquez, D., Esteban-Parra, M., and Castro-Diez, Y., Spectral characteristics and predictability of the NAO assessed through singular spectral analysis, J. Geophys. Res., 2002, vol. 107. https://doi.org/10.1029/2001JD001436

  5. Gao, H., Xu, J., and Wu, Q., Seasonal and QBO variations in the oh nightglow emission observed by TIMED/SABER, J. Geophys. Res., 2010, vol. 115, A06313. https://doi.org/10.1029/2009JA014641

    Article  Google Scholar 

  6. Gao, H., Xu, J., and Chen, G.-M., The responses of the nightglow emissions observed by the TIMED/SABER satellite to solar radiation, J. Geophys. Res.: Space, 2016, vol. 121, pp. 1627–1642.

    Article  Google Scholar 

  7. Gerasimova, N.G. and Yakovleva, A.V., A system of high-transmission spectrographs with diffraction grating, Prib. Tekh. Eksp., 1956, no. 1, pp. 86–95.

  8. Grygalashvyly, M., Several notes on the OH* layer, Ann. Geophys., 2015, vol. 33, no. 7, pp. 923–930. https://doi.org/10.5194/angeo-33-923-2015

    Article  Google Scholar 

  9. Grygalashvyly, M., Sonnemann, G.R., Lübken, F.-J., Hartogh, P., and Berger, U., Hydroxyl layer: Mean state and trends at midlatitudes, J. Geophys. Res.: Atmos., 2014, vol. 119, pp. 12391–12419.

    Article  Google Scholar 

  10. Höppner, K. and Bittner, M., Evidence for solar signals in the mesopause temperature variability?, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 431–448.

    Article  Google Scholar 

  11. Jajcay, N., Hlinka, J., Kravtsov, S., Tsonus, A.A., and Paluš, M., Time scales of the European surface air temperature variability: The role of the 7–8 year cycle, Geophys. Res. Lett., 2016, vol. 43, pp. 902–909.

    Article  Google Scholar 

  12. Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W., and Wintel, J., Long-term dynamics of OH* temperatures over central Europe: Trends and solar correlations, Atmos. Chem. Phys., 2016, vol. 16, pp. 15033–15047.

    Article  Google Scholar 

  13. Kondrashov, D., Feliks, Y., and Ghil, M., Oscillatory modes of extended Nile River records (A.D. 622–1922), Geophys. Res. Lett., 2005, vol. 32, L10702. https://doi.org/10.1029/2004GL022156

    Article  Google Scholar 

  14. Liu, G., Shepherd, G.G., and Roble, R.G., Seasonal variations of the nighttime O(1S) and OH airglow emission rates at mid-to-high latitudes in the context of the large-scale circulation, J. Geophys. Res., 2008, vol. 113, A06302. https://doi.org/10.1029/2007JA012854

    Article  Google Scholar 

  15. Lomb, N.R., Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 1976, vol. 39, no. 2, pp. 447–462.

    Article  Google Scholar 

  16. Lopez-Gonzalez, M.J., Rodriguez, E., Wiens, R.H., et al., Seasonal variations of O2 atmospheric and OH(6-2) airglow and temperature at mid-latitudes from SATI observations, Ann. Geophys., 2004, vol. 22, no. 3, pp. 819–828.

    Article  Google Scholar 

  17. Paluš, M. and Novotna, D., Detecting modes with nontrivial dynamics embedded in colored noise: Enhanced Monte Carlo SSA and the case of climate oscillations, Phys. Lett. A, 1998, vol. 248, no. 2, pp. 191–202.

    Article  Google Scholar 

  18. Paluš, M. and Novotna, D., Enhanced Monte Carlo singular system analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records, Nonlinear Processes Geophys., 2004, vol. 11, nos. 5–6, pp. 721–729.

    Article  Google Scholar 

  19. Perminov, V.I. and Pertsev, N.N., Seasonal and nighttime behaviors of emissions of hydroxyl and the atmospheric system of molecular oxygen of the midlatitude mesopause, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 4, pp. 518–525.

  20. Perminov, V.I., Shefov, N.N., and Semenov, A.I., Empirical model of variations in the emission of the molecular oxygen atmospheric system. 1. Intensity, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 1, pp. 104–108.

  21. Perminov, V.I., Semenov, A.I., Medvedeva, I.V., and Pertsev, N.N., Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes, Geomagn. Aeron. (Engl. Transl.), 2014a, vol. 54, no. 2, pp. 230–239.

  22. Perminov, V.I., Semenov, A.I., Medvedeva, I.V., and Zheleznov, Yu.A., Variability of mesopause temperature from the hydroxyl airglow observations over mid-latitudinal sites, Zvenigorod and Tory, Russia, Adv. Space Res., 2014b, vol. 54, no. 12, pp. 2511–2517.

    Article  Google Scholar 

  23. Pertsev, N. and Perminov, V., Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1049–1056.

    Article  Google Scholar 

  24. Plaut, G., Ghil, M., and Vautard, R., Interannual and interdecadal variability in 335 years of central England temperature, Science, 1995, vol. 268, pp. 710–713.

    Article  Google Scholar 

  25. Popov, A.A., Gavrilov, N.M., Perminov, V.I., Pertsev, N.N., and Medvedeva, I.V., Long-term changes in the mesoscale variations of hydroxyl rotational temperature near the mesopause at Tory and Zvenigorod, J. Atmos. Sol.-Terr. Phys., 2020, vol. 205, id 105311. https://doi.org/10.1016/j.jastp.2020.105311

  26. Reid, I.M., Spargo, A.J., and Woithe, J.M., Seasonal variations of the nighttime O(1S) and OH(8-3) airglow intensity at Adelaide, Australia, J. Geophys. Res: Atmos., 2014, vol. 119, pp. 6991–7013.

    Article  Google Scholar 

  27. Reisin, E.R., Scheer, J., Dyrland, M.E., et al., Traveling planetary wave activity from mesopause region airglow temperatures determined by the network for the detection of mesospheric change (NDMC), J. Atmos. Sol.-Terr. Phys., 2014, vol. 119, pp. 71–82.

    Article  Google Scholar 

  28. Scargle, J.D., Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 1982, vol. 263, pp. 835–853.

    Article  Google Scholar 

  29. Scheer, J., Reisin, E.R., and Mandrini, C.H., Solar activity signatures in mesopause region temperatures and atomic oxygen related airglow brightness at El Leoncito, Argentina, J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, pp. 145–154.

    Article  Google Scholar 

  30. Semenov, A.I., Bakanas, V.V., Perminov, V.I., Zheleznov, Yu.A., and Khomich, V.Yu., The near infrared spectrum of the emission of the nighttime upper atmosphere of the Earth, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 3, pp. 390–397.

  31. Shefov, N.N., Hydroxyl emission of the upper atmosphere – I. The behavior during a solar cycle, seasons and geomagnetic disturbances, Planet. Space Sci., 1969, vol. 17, pp. 797–813.

    Article  Google Scholar 

  32. Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie verkhnei atmosfery — indikator ee struktury i dinamiki (Upper Atmospheric Radiation: An Indicator of Its Structure and Dynamics), Moscow: GEOS, 2006.

  33. Sonnemann, G.R., Hartogh, P., Berger, U., and Grygalashvyly, M., Hydroxyl layer: Trend of number density and intra-annual variability, Ann. Geophys., 2015, vol. 33, no. 6, pp. 749–767.

    Article  Google Scholar 

  34. Teiser, G. and von Savigny, C., Variability of OH(3-1) and OH(6-2) emission altitude and volume emission rate from 2003 to 2011, J. Atmos. Sol.-Terr. Phys., 2017, vol. 161, pp. 28–42.

    Article  Google Scholar 

  35. Wiens, R.H. and Weill, G., Diurnal, annual and solar cycle variations of hydroxyl and sodium nightglow intensities in the Europe–Africa sector, Planet. Space Sci., 1973, vol. 21, pp. 1011–1027.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-05-00358a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Perminov or N. N. Pertsev.

Ethics declarations

The authors state that there is no conflict of interests.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perminov, V.I., Pertsev, N.N., Dalin, P.A. et al. Seasonal and Long-Term Changes in the Intensity of O2(b1Σ) and OH(X2Π) Airglow in the Mesopause Region. Geomagn. Aeron. 61, 589–599 (2021). https://doi.org/10.1134/S0016793221040113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221040113

Navigation