Skip to main content
Log in

Some Applied Aspects of the Study of Trends in the Upper and Middle Atmosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

It is shown that that there are currently trends in the parameters of the middle and upper atmosphere and ionosphere that are already leading or may lead in the near future to changes in these spheres. The trends in these parameters, which, in our opinion, can already be used in applied problems, are indicated. The increase in water vapor in the middle atmosphere could influence the state of the ozone layer. This increase explains also the increase in the number of the polar summer mesospheric echoes, which trouble military organizations. There is also a change in the wind system and intensification of the penetration to the ionosphere by internal gravity waves. The latter should lead to a substantial intensification of the “meteorological control” (coupling from below) of the ionosphere. The density trends at satellite altitudes are already leading to an increase in the lifetime of space-debris objects and an increase in the probability of their collisions with space vehicles. The negative trend in the amount of atomic oxygen in the thermosphere most likely indicates intensification of the eddy diffusion. Apparently, this will require the correction of thermospheric models used in many applied problems. The negative trends in the ion temperature in the ionosphere can already influence the operation of global positioning systems. The trends in the total electron content and the “slab thickness” of the ionospheric are related to the correction of the positioning systems and other similar systems. A “descending” of the levels of constant values of Ne in the D region has been detected. This should be taken into account in systems using the propagation of very low-frequency and low-frequency radio waves. The trends in the F2-layer critical frequency may lead in the near future to changes in foF2, which, as the calculations show, substantially influence the parameters of the shortwave radio paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Beig, G., Overview of the mesospheric temperature trend and factors of uncertainty, Phys. Chem. Earth, 2002, vol. 27, pp. 509–519.

    Article  Google Scholar 

  2. Beig, G., Trends in temperature of the mesosphere and its linkages with stratosphere, in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  3. Brasseur, G.P. and Solomon, S., Aeronomy of the Middle Atmosphere, Dordrecht: Springer, 1984; Leningrad: Gidrometeoizdat, 1987.

  4. Clilverd, M.A., Duthie, R., Rodger, C.J., Hardman, R.L., and Yearby, K.H., Long-term climate change in the D‑region, Sci. Rep., 2017, vol. 7, id 16683. https://doi.org/10.1038/s41598-017-16891-4

  5. Danilov, A.D., Seasonal and diurnal variations in foF2 trends, J. Geophys. Res., 2015, vol. 120. https://doi.org/10.1002/2014JA020971

  6. Danilov, A.D., Solar-activity indices in the 24th cycle and the behavior of the ionospheric F2-layer, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 2, pp. 222–226.

  7. Danilov, A.D. and Konstantinova, A.V., Reduction of the atomic oxygen content in the upper atmosphere, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 2, pp. 224–229.

  8. Danilov, A.D. and Konstantinova, A.V., Long-term changes in the relation between foF2 and hmF2, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 5, pp. 577–584

  9. Danilov, A.D. and Konstantinova, A.V., Diurnal and seasonal variations in trends in the E-layer critical frequency, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 5, pp. 629–637.

  10. Danilov, A.D. and Konstantinova, A.V., Diurnal and seasonal variations in long-term changes in the E-layer critical frequency, Adv. Space Res., 2019, vol. 63, pp. 359–370.

    Article  Google Scholar 

  11. Danilov, A.D. and Konstantinova, A.V., Long-term variations in the parameters of the middle and upper atmosphere and ionosphere (review), Geomagn. Aeron. (Engl. Transl.), 2020a, vol. 60, no. 4, pp. 397–420.

  12. Danilov, A.D. and Konstantinova, A.V., Trends in parameters of the F2 layer and the 24th solar-activity cycle, Geomagn. Aeron. (Engl. Transl.), 2020b, vol. 60, no. 5, pp. 586–596.

  13. Danilov, A.D. and Smirnova, N.V., Long-term trends in the electron concentration of the D region: Experimental data, Geomagn. Aeron. (Engl. Transl.), 1999, vol. 39, no. 2, pp. 235–240.

  14. Danilov, A.D., Kazimirovskii, E.S., Vergasova, G.V., and Khachikyan, G.Ya., Meteorologicheskie effekty v ionosfere (Meteorological Effects in the Ionosphere), Leningrad: Gidrometeoizdat, 1987.

  15. Deng, Y., Impact of no cooling and gravity wave on the long-term trend in the upper atmosphere: GITM simulations, in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  16. Emmert, J.T., Thermospheric density climate and climate changes, in Proceedings of the 7th Workshop on Long-Term Changes and Trends in the Atmosphere, Buenos-Aires, 2012.

  17. Emmert, J.T., Altitude and solar activity dependence of 1967–2005 thermospheric density trends derived from orbital drag, J. Geophys. Res., 2015, vol. 120, pp. 2940–2950.

    Article  Google Scholar 

  18. Emmert, J.T., Fejer, B.G., Fesen, C.D., Sheperd, G.G., and Solheim, B.H., Climatology of middle- and low-latitude daytime F-region disturbance in neutral wind measured by wind imaging interferometer (WINDII), J. Geophys. Res., 2001, vol. 24, pp. 701–706.

    Google Scholar 

  19. Emmert, J.T., Picone, J.M., Lean, J.L., and Knowles, S.H., Global change in the thermosphere: Compelling evidence of a secular decrease in density, J. Geophys. Res., 2004, vol. 109, no. A02301. https://doi.org/10.1029/2003JA010176

  20. Emmert, J.T., Mannucci, A.J., McDonald, S.E., and Vergados, P., Attribution of interminimum changes in global and hemispheric total electron content, J. Geophys. Res.: Space, 2017, vol. 122, pp. 2424–2439.

    Article  Google Scholar 

  21. Fagre, M., Zossi, B.S., Saavedra, Z., and Elias, A.G., On some consequences of upper atmosphere cooling over HF signal propagation, in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  22. Frierdich, M. and Pock, Ch., Long-term trends in mesospheric electron densities, in Proceedings of the 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  23. Friedrich, M. and Torkar, K.M., Long-term trends and other residual features of the lower ionosphere, in Proceedings of the 15th ESA Symposium on European Rocket and Balloon Programs and Related Research, Biarritz, France, 2001, ESA SP-471.

  24. Garcia, R., Lopez-Puertas, M., Funke, B., Kinnison, D.E., Marsh, D.R., Smith, A.K., and Gonzales-Galindo, F., On the distribution of CO2 and CO in the mesosphere and lower thermosphere, J. Geophys. Res., 2014, vol. 119, pp. 5700–5718.

    Article  Google Scholar 

  25. Hoffmann, P. and Chau, J.L., Trends in mesospheric winds and gravity waves at Northern middle and polar latitudes, Proceedings of the 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  26. Jacobi, Ch., Geissler, Ch., Lilienthal, F., and Krug, A., Long-term trends of mesosphere/lower thermosphere prevailing winds at northern midlatitudes, in Proceedings of the 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  27. Jakowsky, N., Hoque, M.M., Mielich, J., and Hall, Ch., Equivalent slab thickness of the ionosphere over Europe as an indicator of long-term changes in the thermosphere, in Proceedings of the 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  28. Keating, G.M., Tolson, R.H., and Bradford, M.S., Evidence of long term global decline in the Earth’s thermospheric densities apparently related to anthropogenic effects, Geophys. Res. Lett., 2000, vol. 27, pp. 1523–1526.

    Article  Google Scholar 

  29. Laštovička, J., A review of recent progress in trends in the upper atmosphere, J. Atmos. Sol.-Terr. Phys., 2017, vol. 163, pp. 2–13.

    Article  Google Scholar 

  30. Laštovička, J., A review of progress in trends in the mesosphere-thermosphere-ionosphere system, in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  31. Laštovička, J., Akmaev, R.A., Beig, G., et al., Emerging pattern of global change in the upper atmosphere and ionosphere, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1255–1268.

    Article  Google Scholar 

  32. Laštovička, J., Urbar, J., and Kozubek, M., Long-term trends in the total electron content, Geophys. Res. Lett., 2017, vol. 44, pp. 8168–8172.

    Article  Google Scholar 

  33. Latteck, R., Long-term changes of polar mesospheric summer echoes at Andoya, in Proceedings of the 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  34. Lean, J., Emmert, J.T., Picone, J.M., and Meier, R.R., Global and regional trends in ionospheric electron content, J. Geophys. Res., 2011, vol. 116,A00H04. doi 10.1029/2010JA016378

  35. Liu, X., Yue, J., Xu, J., Garcia, R.R., Russell, J.M. III, Mlynczak, M., Wu, D.L., and Nakamura, T., Variations of global gravity waves derived from 14 years of SABER temperature observations, in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  36. Liu, H.-L., Bardeen, C.G., Foster, B.T., Lauritzen, P., Liu, J., Lu, G., and Wang, W., Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X 2.0), J. Adv. Modell. Earth Syst., 2018, vol. 10, pp. 381–402.

    Article  Google Scholar 

  37. Lübken, F.-J., Berger, U., and Baumgarten, G., On the anthropogenic impact on long-term evolution of noctilucent clouds, Geophys. Res. Lett., 2018a, vol. 45, pp. 6681–6689.

    Article  Google Scholar 

  38. Lübken, F.-J., Berger, U., and Baumgarten, G., On the anthropogenic impact on long term evolution of noctilucent clouds, in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018b.

  39. Marcos, F.A., Wise, J.O., Kendra, M.J., Grossbard, N.J., and Bowman, B.R., Detection of a long-term decrease in thermospheric neutral density, Geophys. Res. Lett., 2005, vol. 32, L04103. https://doi.org/10.1029/2004GL021269

    Article  Google Scholar 

  40. Mlynczak, M., Hunt, L., Yue, J., and Solomon, S., Trends in upper atmosphere energetics and composition: Past, present, and future, in Proceedings of the 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  41. Mlynczak, M.G., Yue, J., McCormack, J., Liebermann, R.S., and Livesey, N.J., An observational gap at the edge of space, EOS, Trans. Am. Geophys. Union, 2021, no. 102. https://doi.org/10.1029/2021EO155494

  42. Nath, O., Seasonal, interannual and long-term variabilities and tendencies of water vapor in the upper stratosphere and mesospheric region over tropics (30° N–30° S), J. Atmos. Sol.-Terr. Phys., 2018, vol. 167, pp. 23–29.

    Article  Google Scholar 

  43. Peters, D.H.W. and Entzian, G., Long-term variability of 50 years of standard phase height measurements at Kühlungsborn, Germany, Adv. Space Res., 2015, vol. 55, pp. 1764–1774.

    Article  Google Scholar 

  44. Peters, D.H.W., Entzian, G., and Keckhut, P., Mesospheric temperature trends derived from standard phase-height measurements, J. Atmos. Sol.-Terr. Phys., 2017, vol. 163, pp. 23–30.

    Article  Google Scholar 

  45. Portnyagin, Yu.I., Merzlyakov, E.G., Sokolova, T.V., Jacobi, T.V., Kurschner, D., Manson, A., and Meek, C., Long-term trends and year-to-year variability of midlatitude mesosphere/lower thermosphere winds, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, pp. 1890–1901.

    Article  Google Scholar 

  46. Ratnam, M.V., Long-term variability in UTLS aerosols and trace gases over Indian region observed by ground based and space borne measurements, in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  47. Reid, I., Spargo, A., and Murphy, D., Long-term observations of the MLT region at Adelaide (34.6° S) and Davis station (68.6° S), in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  48. Sharma, S., Chandra, H., and Vaishnav, R., Long-term middle atmosphere trends observed by lidar and satellite over sub-tropical location during 1997–2016, in Proceedings of the 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  49. Solomon, S., Liu, H., Marsh, D., McInerney, J., Qian, L., and Vitt, F., Whole atmosphere simulation of anthropogenic climate change, in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  50. Su, Y., Yue, J., Hervig, M., Marshall, T., Smith, A., Garcia, R., Guo, D., Guo, S., Siskind, D., and Russell, IIIJ., Carbon dioxide in the polar stratosphere from AIM/SOFIE, in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  51. Taubenheim, J., von Cossart, G., and Eintzian, G., Evidence of CO2-induced progressive cooling of the middle atmosphere derived from radio observations, Adv. Space Res., 1990, vol. 10, no. 10, pp. 171–174.

    Article  Google Scholar 

  52. Taubenheim, J., von Cossart, G., and Eintzian, G., Global climate changes and the lower ionosphere, in Abstracts of the 3rd Workshop on Meteorological Effects in the Ionosphere by the Commission for Multilateral Cooperation of Academies of Sciences of Socialist Countries on the Complex Problem “Planetary Geophysical Research” (Sofia, October 31–November 4, 1988).

  53. Venchiarutti, V., Zossi, M., and Elias, G., The effect of neutral density long term variation on satellite lifetime using a simple classical mechanics formulation, in Proceedings of the 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  54. Yue, J., Jan, Y., Rezac, L., Garcia, R., López-Puertas, M., Mlynczak, M., and Russel, J., Increasing carbon dioxide concentration in the upper atmosphere observed by SABER, in Proceedings of the 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  55. Yue, J., Rezac, L., Yongxiao, J., Russell, J.M. III, Garcia, R., López-Puertas, M., and Mlynczak, M.G., On long-term trends of SABER CO2 with WACCM (forward modeling), in Proceedings of the 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  56. Zhang, S.-R. and Holt, J.M., Long-term ionospheric cooling: Dependency on local time, season, solar activity, and geomagnetic activity, J. Geophys. Res., 2013, vol. 118, no. 6, pp. 3719–3730.

    Article  Google Scholar 

  57. Zhang, S.-R., Holt, J.M., Erickson, P.J., Goncharenko, L.P., Nicolls, M.J., McCready, M., and Kelly, J., Ionospheric ion temperature climate and upper atmospheric long-term cooling, J. Geophys. Res., 2016a, vol. 121, no. 9, pp. 8951–8968.

    Article  Google Scholar 

  58. Zhang, S.-R., Holt, J.M., Erickson, P., Goncharenko, L., Nicolls, M., McCready, M., and Kelly, J., Strong ionospheric long-term cooling measured by multiple incoherent scatter radars, in Proceedings of the 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016b.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Danilov or N. A. Berbeneva.

Additional information

Translated by A. Danilov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, A.D., Berbeneva, N.A. Some Applied Aspects of the Study of Trends in the Upper and Middle Atmosphere. Geomagn. Aeron. 61, 578–588 (2021). https://doi.org/10.1134/S0016793221040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221040046

Navigation