Skip to main content
Log in

Response of a Magnetospheric Storm in the Atmospheric Electric Field of the Midlatitudes

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The response of strong magnetic storms in variations of the electric field of the near-ground atmosphere of the midlatitudes are studied according to data from long-term observations of aeroelectric (Ez) and geomagnetic fields at the midlatitude Borok Geophysical Observatory. For the period 1998–2015, 19 strong and very strong magnetic storms with a minimal Dst index of < –100 nT and a maximal index value of Kp > 7, which correspond to undisturbed meteorological conditions of the lower atmosphere (i.e., good weather conditions), are identified at Borok Observatory. The effect of a magnetic storm on changes in the electric field of the near-surface atmosphere is shown to be more efficiently manifested in the daytime around noon. A statistically significant variation in the strength of the aeroelectric field was found. It was characterized by an increase in the Ez value over a time interval of ±4 h relative to the time of the minimum of the Dst variation of the magnetic storm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Anisimov, S.V. and Dmitriev, E.M., Informatsionno–izmeritel’nyi kompleks i baza dannykh Geofizicheskoi observatorii “Borok” IFZ RAN (Information–Measuring System and Database of the Borok geophysical observatory of Institute of Physics of the Earth, Russian Academy of Sciences), Moscow: Inst. Fiz. Zemli, Ross. Akad. Nauk, 2003.

  2. Anisimov, S.V. and Mareev, E.A., Geophysical studies of the global electric circuit, Izv., Phys. Solid Earth, 2008, vol. 44, no. 10, pp. 760–769.

    Article  Google Scholar 

  3. Anisimov, S.V. and Shikhova, N.M., Variability of the electric field of the undisturbed atmosphere in midlatitudes, Geofiz. Issled., 2008, No. 3, pp. 25–38.

  4. Anisimov, S.V., Morgunov, V.A., and Troitskaya, V.A., Substorms potential gradient of the atmospheric electric field, Publ. Inst. Geophys., Pol. Acad. Sci., D, 1991, vol. 35, pp. 77–81.

    Google Scholar 

  5. Anisimov, S.V., Chulliat, A., and Dmitriev, E.M., Information-measuring complex and database of mid-latitude Borok geophysical observatory, Russ. J. Earth Sci., 2008, vol. 10, ES3007. https://doi.org/10.2205/2007ES000227

    Article  Google Scholar 

  6. Anisimov, S.V., Galichenko, S.V., and Shikhova, N.M., Formation of electrically active layers in the atmosphere with temperature inversion, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 4, pp. 391–400.

    Article  Google Scholar 

  7. Anisimov, S.V., Afinogenov, K.V., and Shikhova, N.M., Dynamics of undisturbed midlatitude atmospheric electricity: From observations to scaling, Radiophys. Quantum Electron., 2013, vol. 56, nos. 11–12, pp. 709–722.

  8. Anisimov, S.V., Galichenko, S.V., Shikhova, N.M., and Afinogenov, K.V., Electricity of the convective atmospheric boundary layer: Field observations and numerical simulation, Izv., Atmos. Ocean. Phys., 2014a, vol. 50, no. 4, pp. 390–394.

    Article  Google Scholar 

  9. Anisimov, S.V., Galichenko, S.V., and Shikhova, N.M., Space charge and aeroelectric flows in the exchange layer: An experimental and numerical study, Atmos. Res., 2014b, vols. 135–136, pp. 244–254.

    Article  Google Scholar 

  10. Anisimov, S.V., Galichenko, S.V., Afinogenov, K.V., Makrushin, A.P., and Shikhova, N.M., Radon volumetric activity and ion production in the undisturbed lower atmosphere: Ground-based observations and numerical modeling, Izv., Phys. Solid Earth, 2017a, vol. 53, no. 1, pp. 147–161.

    Article  Google Scholar 

  11. Anisimov, S.V., Galichenko, S.V., and Mareev, E.A., Electrodynamic properties and height of atmospheric convective boundary layer, Atmos. Res., 2017b, vol. 194, pp. 119–129.

    Article  Google Scholar 

  12. Anisimov, S.V., Galichenko, S.V., Afinogenov, K.V., and Prokhorchuk, A.A., Global and regional electricity components in undisturbed midlatitude lower atmosphere, Izv., Phys. Solid Earth, 2018a, vo. 54, no. 5, pp. 764–774. https://doi.org/10.1134/S1069351318050038

    Article  Google Scholar 

  13. Anisimov, S.V., Galichenko, S.V., Aphinogenov, K.V., and Prokhorchuk, A.A., Evaluation of the atmospheric boundary-layer electrical variability, Boundary Layer Meteorol., 2018b, vol. 167, no. 2, pp. 327–348. https://doi.org/10.1007/s10546-017-0328-0

    Article  Google Scholar 

  14. Apsen, A.G., Kanonidi, Kh.D., Chernysheva, S.P., Chetaev, D.N., and Sheftel’, V.M., Magnitosfernye effekty v atmosfernom elektrichestve (Magnetospheric Effects in Atmospheric Electricity), Moscow: Nauka, 1988.

  15. Astaf’eva, N.M., Wavelet analysis: basic theory and some applications, Phys.-Usp., 1996, vol. 39, no. 11, pp. 1085–1108.

    Article  Google Scholar 

  16. Belova, E., Kirkwood, S. and Tammet, H., The effect of magnetic substorms on near-ground atmospheric currents, Ann. Geophys., 2000, vol. 18, no. 12, pp. 1623–1629.

    Article  Google Scholar 

  17. Burns, G.B., Hesse, M.H., Parcell, S.K., Makachowski, S., and Cole, K.D., The geoelectric field at Davis stations, Antarctica, J. Atmos. Terr. Phys., 1995, vol. 57, pp. 1783–1789.

    Article  Google Scholar 

  18. Chalmers, J.A., Atmospheric Electricity, Oxford: Pergamon, 1967; Leningrad: Gidrometeoizdat, 1974.

  19. Dremin, I.M., Ivanov, O.V., and Nechitailo, V.A., Wavelets and their uses, Phys.-Usp., 2001, vol. 44, no. 5, pp. 445–478.

    Article  Google Scholar 

  20. Elhalel, G., Yair, Y., Nicoll, K., Price, C., Reuveni, Y., and Harrison, R.G., Influence of short-term solar disturbances on the fair weather conduction current, J. Space Weather Space Clim., 2014, vol. 4, art. ID A26. https://doi.org/10.1051/swsc/2014022

  21. Frank-Kamenetsky, A.V., Troshichev, O.A., Burns, G.B., and Papitashvili, V.O., Variations of the atmospheric electric field in the near-pole region related to the interplanetary magnetic field, J. Geophys. Res., 2001, vol. 106, pp. 179–190.

    Article  Google Scholar 

  22. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., and Vasyliunas, V.M., What is a geomagnetic storm?, J. Geophys. Res., 1994, vol. 99, no. A4, pp. 5771–5792. https://doi.org/10.1029/93JA02867

    Article  Google Scholar 

  23. Kleimenova, N.G., Kozyreva, O.V., Michnowski, S., and Kubicki, M., Effect of magnetic storms in variations in the atmospheric electric field at midlatitudes, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 5, pp. 622–630.

  24. Kleimenova, N., Kozyreva, O., Kubicki, M., and Michnowski, S., Variations of the mid-latitude atmospheric electric field (Ez) associated with geomagnetic disturbances and Forbush decreases of cosmic rays, Publ. Inst. Geophys. Pol. Acad. Sci. D, 2009, vol. 73, pp. 55–64.

    Google Scholar 

  25. Kleimenova, N.G., Kozyreva, O.V., Kubicki, M., and Michnowski, S., Morning polar substorms and variations in the atmospheric electric field, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 1, pp. 48–57.

  26. Kleimenova, N.G., Kozyreva, O.V., Kubicki, M., Odzimek, A., and Malysheva, L.M., Effect of substorms in the Earth’s nightside sector on variations in the surface atmospheric electric field at polar and equatorial latitudes, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 4, pp. 467–473.

  27. Kleimenova, N.G., Odzimek, A., Michnowski, S., and Kubicki, M., Geomagnetic storms and substorms as space weather influence on atmospheric electric field variations, Sun Geosphere, 2018, vol. 13, no. 1, pp. 101–107. https://doi.org/10.31401/SunGeo2018.01.07

    Article  Google Scholar 

  28. Kruglov, A.A., Frank-Kamenetsky, A.V., Burns, G., French, J., and Morozov, V.N., On the connection between variations of atmospheric electric field as measured at ground surface in the Central Antarctica and ionospheric potential, Proc. 33th Ann. Seminar “Physics of Auroral Phenomena”, Apatity, 2010, pp. 171–173.

  29. Michnowski, S., Solar wind influences on atmospheric electricity variables in polar regions, J. Geophys. Res., 1998, vol. 103, pp. 13939–13948.

    Article  Google Scholar 

  30. Mikhailova, G.A., Kapustina, O.V., and Smirnov, S.E., Effects of solar and geomagnetic activities in variations of power spectra of electrical and meteorological parameters in the near-Earth atmosphere in Kamchatka during October 2003 solar events, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 645–654.

  31. Mühleisen, R., The global circuit and its parameters, in Electrical Process in Atmospheres, Dolezalek, H. and Reiter, R., Eds., Darmstadt. Germany, 1977, pp. 467–476.

    Google Scholar 

  32. Nikiforova, N.N., Kleimenova, N.G., Kozyreva, O.V., Kubicki, M., and Michnowski, S., Influence of auroral-latitude precipitations of energetic electrons on variations in the atmospheric electric field at polar latitudes (Spitsbergen Archipelago), Geomagn. Aeron. (Engl. Transl.), 2003, vol. 43, no. 1, pp. 29–35.

  33. Olson, D.E., The evidence for auroral effects on atmospheric electricity, Pure Appl. Geophys., 1971, vol. 84, pp. 118–138.

    Article  Google Scholar 

  34. Rycroft, M.J., Harrison, R.G., Nicoll, K.A., and Mareev, E.A., An overview of Earth’s global electric circuit and atmospheric conductivity, Space Sci. Rev., 2008, vol. 137, pp. 83–105.

    Article  Google Scholar 

  35. Shaw, G.E. and Hunsucker, R.D., A study of possible correlation between fire-weather electric field and auroral activity, in Electrical Process in Atmospheres, Dolezalek, H. and Reiter, R., Eds., Darmstadt. Germany, 1977, pp. 576–581.

    Google Scholar 

  36. Slyunyaev, N.N., Mareev, E.A., and Zhidkov, A.A., On the variation of the ionospheric potential due to large-scale radioactivity enhancement and solar activity, J. Geophys. Res.: Space. Phys., 2015, vol. 120, pp. 7060–7082.

    Article  Google Scholar 

  37. Smirnov, S.E., Response of the electric state of the surface atmosphere to the geomagnetic storm of April 5, 2010, Dokl. Earth Sci., 2014, vol. 456, no. 1, pp. 622–627.

    Article  Google Scholar 

  38. Smirnov, S.E., Mikhailova, G.A., and Kapustina, O.V., Variations in the quasi-static electric field in the near-Earth’s atmosphere during geomagnetic storms in November 2004, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 4, pp. 502–514.

  39. Williams, E. and Mareev, E.A., Recent progress on the global electrical circuit, Atmos. Res., 2014, vols. 135–136, pp. 208–227.

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research, project no. 18-05-00233.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Anisimov.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, S.V., Shikhova, N.M. & Kleimenova, N.G. Response of a Magnetospheric Storm in the Atmospheric Electric Field of the Midlatitudes. Geomagn. Aeron. 61, 180–190 (2021). https://doi.org/10.1134/S001679322102002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322102002X

Navigation