Skip to main content
Log in

Advanced Production of Quasi-Definitive Magnetic Observatory Data of the INTERMAGNET Standard

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The system for the preparation of quasi-definitivedata of the INTERMAGNET standard is described. Unlike the final data, which was prepared no earlier than 1 year after the measurement, the data provided with the described system are available 1 day after the last series of absolute observations. Quasi-definitivedata are used to model fast variations in the main magnetic field of the Earth and to calculate indices of geomagnetic activity. The quality of the data obtained from a comparison of the approved final INTERMAGNET data and the data from the World Magnetic Model (WMM) and International Geomagnetic Reference Field (IGRF) model is analyzed. The quality of the quasi-definitive data obtained by the proposed method of automated algorithms is shown to be comparable to the quality provided by the traditional approaches to the preparation of the final INTERMAGNET standard data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Agayan, S., Bogoutdinov, Sh., Soloviev, A., and Sidorov, R., The study of time series using the DMA methods and geophysical applications, Data Sci. J., 2016, vol. 15, pp. 1–21. https://doi.org/10.5334/dsj-2016-014

    Article  Google Scholar 

  2. Aleshin, I.M., Getmanov, V.G., Grudnev, A.A., et al., Compact energy-effective device for geomagnetic data collection and operational transmission, Nauchn. Priborostr., 2018, vol. 28, no. 3, pp. 5–13.

    Article  Google Scholar 

  3. Alldredge, L.R., A proposed automatic standard magnetic observatory, J. Geophys. Res., 1960, vol. 65, pp. 3777–3786. https://doi.org/10.1029/JZ065i011p03777

    Article  Google Scholar 

  4. Bogoutdinov, Sh.R., Gvishiani, A.D., Agayan, S.M., Soloviev, A.A., and Kin, E., Recognition of disturbances with specified morphology in time series. Part 1: Spikes on magnetograms of the worldwide INTERMAGNET network, Izv., Phys. Solid Earth, 2010, vol. 46, no. 11, pp. 1004–1016.

    Article  Google Scholar 

  5. Buslaev, G.V., Pystin, V.S., Udoratin, V.V., and Shergin, A.S., Determination of the wellbore position by measuring the Earth’s magnetic field during extended horizontal well drilling in the Arctic, Izv. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, 2015, no. 3, pp. 91–100.

  6. Chulliat, A., Brown, W., Alken, P., Macmillan, S., Nair, M., Beggan, C., Woods, A., Hamilton, B., Meyer, B., and Redmon, R., Out-of-cycle update of the US/UK world magnetic model for 2015–2020: Technical note, National Centers for Environmental Information, NOAA, 2019. https://doi.org/10.25921/xhr3-0t19

  7. Clarke, E., Baillie, O., Reay, S.J., and Turbitt, C.W., A method for the near real-time production of quasi-definitive magnetic observatory data, Earth Planets Space, 2013, vol. 65, pp. 1363–1374. https://doi.org/10.5047/eps.2013.10.001

    Article  Google Scholar 

  8. Geomagnetic data recorded at Geomagnetic Observatory Saint Petersburg (IAGA code: SPG), ESDB repository, Geophysical Center of the Russian Academy of Sciences, 2016. https://doi.org/10.2205/SPG2012

  9. Gvishiani, A.D. and Lukianova, R.Yu., Estimating the influence of geomagnetic disturbances on the trajectory of the directional drilling of deep wells in the Arctic region, Izv., Phys. Solid Earth, 2018, no. 4, pp. 554–564.

  10. Gvishiani, A., Lukianova, R., Soloviev, A., and Khokhlov, A., Survey of geomagnetic observations made in the northern sector of Russia and new methods for analysing them, Surv. Geophys., 2014, vol. 35, pp. 1123–1154. https://doi.org/10.1007/s10712-014-9297-8

    Article  Google Scholar 

  11. Gvishiani, A.D., Starostenko, V.I., Sumaruk, Yu.P., Solov’ev, A.A., and Legostaeva, O.V., A decrease in solar and geomagnetic activity from cycle 19 to cycle 24, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 3, pp. 299–306. 2015. https://doi.org/10.1134/S0016793215030093

  12. Gvishiani, A., Soloviev, A., Krasnoperov, R., and Lukianova, R., Automated hardware and software system for monitoring the Earth’s magnetic environment, Data Sci. J., 2016a, vol. 15, p. 18. https://doi.org/10.5334/dsj-2016-018

    Article  Google Scholar 

  13. Gvishiani, A.D., Sidorov, R.V., Lukianova, R.Yu., and Soloviev, A.A., Geomagnetic activity during St. Patrick’s day storm inferred from global and local indicators, Russ. J. Earth Sci., 2016b, vol. 16, ES6007. https://doi.org/10.2205/2016ES000593

    Article  Google Scholar 

  14. Gvishiani, A.D., Soloviev, A.A., Sidorov, R.V., Krasnoperov, R.I., Grudnev, A.A., Kudin, D.V., Karapetyan, D.K., and Simonyan, A.O., Advances in the organization of geomagnetic monitoring in Russia and the near abroad, Vestn. Otd. Nauk Zemle Ross. Akad. Nauk, 2018, vol. 10, NZ4001. https://doi.org/10.2205/2018NZ000357

    Article  Google Scholar 

  15. Jankowski, J. and Sucksdorff, C., Guide for Magnetic Measurements and Observatory Practice, Warsaw: International Association of Geomagnetism and Aeronomy, 1996.

    Google Scholar 

  16. Johnston, H.F., Mean k-indices from twenty one magnetic observatories and five quiet and five disturbed days for 1942, Terr. Magn. Atmos. Electr., 1943, vol. 48, no. 4, pp. 219–227. https://doi.org/10.1029/TE048i004p00219

    Article  Google Scholar 

  17. Kaftan, V.I. and Krasnoperov, R.I., Geodetic observations at geomagnetic observatories, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 1, pp. 118–123.

  18. Krasnoperov, R.I., Sidorov, R.V., and Soloviev, A.A., Modern geodetic methods for high-accuracy survey coordination on the example of magnetic exploration, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 4, pp. 547–554.

  19. Lesur, V., Heumez, B., Telali, A., Lalanne, X., and Soloviev, A., Estimating error statistics for Chambon-la-Forêt observatory definitive data, Ann. Geophys., 2017, vol. 35, no. 4, pp. 939–952. https://doi.org/10.5194/angeo-35-939-2017

    Article  Google Scholar 

  20. Love, J.J. and Chulliat, A., An international network of magnetic observatories, EOS, Trans. Am. Geophys. Union, 2013, vol. 94, no. 42, pp. 373–374. https://doi.org/10.1002/2013EO420001

    Article  Google Scholar 

  21. Maus, S., Macmillan, S., McLean, S., Hamilton, B., Thomson, A., Nair, M., and Rollins, C., The US/UK World Magnetic Model for 2010–2015, NOAA Technical Report, NESDIS/NGDC., 2010. http://www.geomag. bgs.ac.uk/documents/WMM2010_Report.pdf.

  22. Nechaev, S.A., Rukovodstvo dlya statsionarnykh geomagnitnykh nablyudenii (Guide for Stationary Geomagnetic Observations), Irkutsk: Ins. geogr. im. V.B. Sochavy SO RAN, 2006.

  23. Nowozynski, K. and Reda, J., Comparison of observatory data in quasi-real time, in XII IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing, Reda, J., Ed., Belsk, Poland: Inst. Geophys. Pol. Acad. Sci., 2007, no. 398, pp. 123–127.

  24. Peltier, A. and Chulliat, A., On the feasibility of promptly producing quasi-definitive magnetic observatory data, Earth Planets Space, 2010, vol. 62, no. 2, pp. e5–e8. https://doi.org/10.5047/eps.2010.02.002

    Article  Google Scholar 

  25. Pilipenko, V.A., Krasnoperov, R.I., and Soloviev, A.A., Problems and prospects of geomagnetic research in Russia, Vestn. Otd. Nauk Zemle Ross. Akad. Nauk, 2019, vol. 11, 2019, NZ1103. https://doi.org/10.2205/2019NZ000362

  26. Poedjono, B., Beck, N., Buchanan, A., Brink, J., Longo, J., Finn, C.A., and Worthington, E.W., Geomagnetic referencing in the Arctic environment, in SPE Arctic and Extreme Environments Conference and Exhibition, Moscow, Russia, 2011, SPE-149629-MS. https://doi.org/10.2118/149629-MS

  27. Poedjono, B., Beck, N., Buchanan, A., Borri, L., Maus, S., Finn, C.A., Worthington, E.W., and White, T., Improved geomagnetic referencing in the Arctic environment, in SPE Arctic and Extreme Environments Technical Conference and Exhibition. Moscow, Russia, 2013, SPE-166850-MS. https://doi.org/10.2118/166850-MS

  28. Rasson, J.L., About absolute geomagnetic measurements in the observatory and in the field, Publication scientifique et technique no. 040, Brussels: L’institut Royal Météorologique de Belgique, 2005.

    Google Scholar 

  29. Rasson, J., Testing the time-stamp accuracy of a digital variometer and its data logger, in Proc. XIII IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing, Love, J.J., Ed., Boulder and Golden, Col., Geological Survey Open File Report, 2009, no. 1226, pp. 225–231.

  30. Sidorov, R.V., Soloviev, A.A., and Bogoutdinov, Sh.R., Application of the SP algorithm to the INTERMAGNET magnetograms of the disturbed geomagnetic field, Izv., Phys. Solid Earth, 2012, vol. 48, no. 5, pp. 410–414.

    Article  Google Scholar 

  31. Sidorov, R., Soloviev, A., Krasnoperov, R., Kudin, D., Grudnev, A., Kopytenko, Y., Kotikov, A., and Sergushin, P., Saint Petersburg magnetic observatory: From Voeikovo subdivision to INTERMAGNET certification, Geosci. Instrum. Methods Data Syst., 2017, vol. 6, no. 2, pp. 473–485. https://doi.org/10.5194/gi-6-473-2017

    Article  Google Scholar 

  32. Soloviev, A.A. and Smirnov, A.G., Accuracy estimation of the modern core magnetic field models using DMA-methods for recognition of the decreased geomagnetic activity in magnetic observatory data, Izv., Phys. Solid Earth, 2018, vol. 54, no. 6, pp. 872–885.

    Article  Google Scholar 

  33. Soloviev, A., Chulliat, A., Bogoutdinov, S., Gvishiani, A., Agayan, S., Peltier, A., and Heumez, B., Automated recognition of spikes in 1 Hz data recorded at the Easter Island magnetic observatory, Earth Planets Space, 2012, vol. 64, no. 9, pp. 743–752. https://doi.org/10.5047/eps.2012.03.004

    Article  Google Scholar 

  34. Soloviev, A.A., Sidorov, R.V., and Kudin, Automated calculation of quasi-definitive data, 2015. http://geomag. gcras.ru/materials-man.html.

  35. Soloviev, A., Agayan, S., and Bogoutdinov, S., Estimation of geomagnetic activity using measure of anomalousness, Ann. Geophys., 2016a, vol. 59, no. 6, G0653. https://doi.org/10.4401/ag-7116

    Article  Google Scholar 

  36. Soloviev, A., Dobrovolsky, M., Kudin, D., and Sidorov, R., Minute values of X, Y, Z components and total intensity F of the Earth’s magnetic field from Geomagnetic Observatory Saint Petersburg (IAGA code: SPG), ESDB Repository, Geophysical Center of the Russian Academy of Sciences, 2016b. https://doi.org/10.2205/SPG2012min

    Book  Google Scholar 

  37. Soloviev, A., Kopytenko, Yu., Kotikov, A., Kudin, D., and Sidorov, R., 2015 definitive data from geomagnetic observatory Saint Petersburg (IAGA code: SPG): minute values of X, Y, Z components and total intensity F of the Earth’s magnetic field, ESDB Repository, Geophysical Center of the Russian Academy of Sciences, 2016c. https://doi.org/10.2205/SPG2015min-def

  38. Soloviev, A.A., Sidorov, R.V., Krasnoperov, R.I., Grudnev, A.A., and Khokhlov, A.V., Klimovskaya: A new geomagnetic observatory, Geomagn. Aeron. (Engl. Transl.), 2016d, vol. 56, no. 3, pp. 342–354.

  39. Soloviev, A., Chulliat, A., and Bogoutdinov, Sh., Detection of secular acceleration pulses from magnetic observatory data, Phys. Earth Planet. Int., 2017a, vol. 270, pp. 128–142. https://doi.org/10.1016/j.pepi.2017.07.005

    Article  Google Scholar 

  40. Soloviev, A., Kopytenko, Yu., Kotikov, A., Kudin, D., and Sidorov, R., 2016 definitive data from geomagnetic observatory Saint Petersburg (IAGA code: SPG): minute values of X, Y, Z components and total intensity F of the Earth’s magnetic field, ESDB Repository, Geophysical Center of the Russian Academy of Sciences, 2017b. https://doi.org/10.2205/SPG2016min-def

  41. Soloviev, A., Lesur, V., and Kudin, D., On the feasibility of routine baseline improvement in processing of geomagnetic observatory data, Earth Planets Space, 2018, vol. 70, id 16. https://doi.org/10.1186/s40623-018-0786-8

  42. St-Louis, B., INTERMAGNET Technical Reference Manual, Version 4.6, Edinburg, UK: INTERMAGNET, 2012.

    Google Scholar 

  43. Thebault, E., Finlay, C.C., Beggan, C.D., et al., International geomagnetic reference field: the 12th generation, Earth Planets Space, 2015, vol. 67, id 79. https://doi.org/10.1186/s40623-015-0228-9

  44. Wienert, K.A., Notes on Geomagnetic Observatory and Survey Practice, Paris: UNESCO, 1970.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The results presented in this study were obtained with the use of data recorded by geomagnetic observatories. We thank the national institutions that support them, the INTERMAGNET network for the promotion of high standards of the functioning of geomagnetic observatories (http://www.intermagnet.org), and the Russian-Ukrainian Center for Geomagnetic Data (http://geomag.gcras.ru) for the free dissemination of data online. We used data from the Analytical Center for Geomagnetic Data Center for Collective Use at the Geophysical Center of the Russian Academy of Sciences.

The authors are grateful to the anonymous referee, whose comments helped to improve and supplement the text of the manuscript significantly.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Kudin or R. V. Sidorov.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudin, D.V., Soloviev, A.A., Sidorov, R.V. et al. Advanced Production of Quasi-Definitive Magnetic Observatory Data of the INTERMAGNET Standard. Geomagn. Aeron. 61, 54–67 (2021). https://doi.org/10.1134/S0016793221010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221010096

Navigation