Skip to main content
Log in

Solar Activity Predictability Horizons

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The chaotic component in solar-activity variations, the limited amount of observational statistics, and the use of proxy data impose limitations on long-term predictions. This study uses the well-known reconstructions of total solar irradiance (TSI) from optical observations (from 1610 AD) and cosmogenic radioisotopes (from 7362 BC) to estimate the maximum Lyapunov exponent for 11-year and secular cycles. This is done with the classical algorithm described by Wolf et al. (1985). The maximum Lyapunov exponents turned out to be positive in both cases, thus confirming the presence of the chaotic component in time series. We then estimate the predictability horizon Tp with the well-known error for each reconstruction. It turned out that the predictability horizon is on average 10 ≤ Tp ≤ 22 years for 11-year cycles and on average 40 ≤ Tp ≤ 60 years for secular cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. In other words, the noise in the series becomes dynamic chaos.

REFERENCES

  1. Boffetta, G., Cencini, M., Falcioni, M., and Vulpiani, A., Predictability: A way to characterize complexity, Phys. Rep., 2002, vol. 356, pp. 367–474.

    Article  Google Scholar 

  2. Coddington, O., Lean, J.L., Pilewskie, P., et al., A solar irradiance climate data record, Bull. Am. Meteorol. Soc., 2016, vol. 97, no. 7, pp. 1265–1282. https://www.ncei. noaa.gov/data/solar-spectral-irradiance/access/yearly/.

    Article  Google Scholar 

  3. Dudok de Wit, T., Kopp, G., Fröhlich, C., and Schöll, Methodology to create a new total solar irradiance record: Making a composite out of multiple data records, Geophys. Res. Lett., 2017, vol. 44, no. 3, pp. 1196–1203.

    Article  Google Scholar 

  4. Eckmann, J.-P., Oliffson Kamphorst, S., Ruelle, D., and Ciliberto, S., Lyapunov exponents from time series, Phys. Rev. A, 1986, vol. 34, pp. 4971–4979.

    Article  Google Scholar 

  5. Egorova, T., Schmutz, W., Rozanov, E., et al., Revised historical solar irradiance forcing, Astron. Astrophys., 2018, vol. 615, id A85.

  6. Farmer, J.D. and Sidorovich, J.J., Predicting chaotic time series, Phys. Rev. Lett., 1987, vol. 59, pp. 845–848.

    Article  Google Scholar 

  7. Friedland, G. and Metere, A., Isomorphism between maximum Lyapunov exponent and Shannon’s channel capacity, 2017. https://arxiv.org/abs/1706.08638.

  8. Gott, J.R., Implications of the Copernican principle for our future prospects, Nature, 1993, vol. 363, no. 6427, pp. 315–319.

    Article  Google Scholar 

  9. Hope, A.P., Canty, T.P., Salawitch, R.J., et al., Forecasting global warming, in Paris Climate Agreement: Beacon of Hope, Springer, 2017, pp. 51–113.

    Google Scholar 

  10. Ishkov, B.N. and Shibaev, I.G., Solar activity cycles: General characteristics and modern forecasting boundaries, Bull. Russ. Acad. Sci., 2006, vol. 70, no. 10, pp. 1643–1647.

    Google Scholar 

  11. Kopp, G., Krivova, N., Wu, C.J., and Lean, J., The impact of the revised sunspot record on solar irradiance reconstructions, Sol. Phys., 2016, vol. 291, nos. 9–10, pp. 2951–2965.

    Article  Google Scholar 

  12. Kremliovsky, M.N., Limits of predictability of solar activity, Sol. Phys., 1995, vol. 159, pp. 371–380.

    Article  Google Scholar 

  13. Lean, J.L., Estimating solar irradiance since 850 CE, Earth Space Sci., 2018, vol. 5, no. 4, pp. 133–149.

    Article  Google Scholar 

  14. Letellier, C., Aguirre, L.A., Maquet, J., and Gilmore, R., Evidence for low dimensional chaos in sunspot cycles, Astron. Astrophys., 2006, vol. 449, pp. 379–387.

    Article  Google Scholar 

  15. Makarenko, N.G., Karimova, L.M., Helema, S., and Eronen, M., Evaluating direct and indirect evidence of climatic change by holder regularity and order pattern in time series, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 8, pp. 922–926.

  16. McSharry, P.E. and Smith, L.A., Consistent nonlinear dynamics: identifying model Phys. D (Amsterdam, Neth.), 2004, vol. 192, nos. 1–2, pp. 1–22.

  17. Mordvinov, A.V., Skakun, A.A., and Volobuev, D.M., Long-term changes in total solar irradiance and their predictions, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 8, pp. 1175–1186.

  18. Moss, D., Kitchatinov, L.L., and Sokoloff, D., Reversals of the solar dipole, Astron. Astrophys., 2013, vol. 550, id L9.

  19. Nagovitsyn, Yu.A., Nagovitsyna, E.Yu., and Makarova, V.V., The Gnevyshev–Ohl rule for physical parameters of the solar magnetic field: The 400-year interval, Astron. Lett., 2009, vol. 35, no. 8, pp. 564–571.

    Article  Google Scholar 

  20. Ott, E., Sauer, T., and Yorke, J.A., Coping with Chaos: Analysis of Chaotic Data and the Exploitation of Chaotic Systems, John Wiley and Sons, 1994.

    Google Scholar 

  21. Pesnell, W.D., Solar cycle predictions (invited review), Sol. Phys., 2012, vol. 281, no. 1, pp. 507–532.

    Google Scholar 

  22. Sano, M. and Sawada, Y., Measurements of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett., 1985, vol. 72, no. 13, pp. 1082–1085.

    Article  Google Scholar 

  23. Steinhilber, F. and Beer, J., Prediction of solar activity for the next 500 years, J. Geophys. Res.: Space Phys., 2013, vol. 118, no. 5, pp. 1861–1867.

    Article  Google Scholar 

  24. Steinhilber, F., Beer, J., and Fröhlich, C., Total solar irradiance during the Holocene, Geophys. Res. Lett., 2009, vol. 36, no. 19.

  25. Usoskin, I.G., Comment on the paper by Popova et al. “On a role of quadruple component of magnetic field in defining solar activity in grand cycles”, 2017. https://arxiv.org/ pdf/1710.05203.

  26. Usoskin, I.G., Sokoloff, D., and Moss, D., Grand minima of solar activity and the mean-field dynamo, Sol. Phys., 2009, vol. 254, no. 2, pp. 345–355.

    Article  Google Scholar 

  27. Volobuev, D.M. and Makarenko, N.G., Forecast of the decadal average sunspot number, Sol. Phys., 2008, vol. 249, no. 1, pp. 121–133.

    Article  Google Scholar 

  28. Volobuev, D.M. and Makarenko, N.G., Long-term pulses of dynamic coupling between solar hemispheres, Sol. Phys., 2017, vol. 292, no. 4, id 68.

  29. Wolf, A., Lyapunov exponent estimation from a time series, MATLAB Central File Exchange, 2019. https://www. mathworks.com/matlabcentral/fileexchange/48084-wolf-lyapunov-exponent-estimation-from-a-time-series. Accessed October 27, 2019.

  30. Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A., Determining Lyapunov exponents from a time series, Phys. D (Amsterdam, Neth.), 1985, vol. 16, no. 3, pp. 285–317.

  31. Yeo, K., Krivova, N.A., and Solanki, S.K., EMPIRE: A robust empirical reconstruction of solar irradiance variability, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 4, pp. 3888–3914.

    Article  Google Scholar 

  32. Zharkova, V.V., Shepherd, S.J., Popova, E., and Zharkov, S.I., Heartbeat of the Sun from Principal Component Analysis and prediction of solar activity on a millenium timescale, Sci. Rep., 2015, vol. 5, id 15 689.

Download references

ACKNOWLEDGMENTS

The authors are grateful to an anonymous reviewer for the helpful comments, which allowed us to improve the paper.

Funding

This work was supported by the Ministry of Science of the Republic of Kazakhstan, project no. АР05134227 (Kazakhstan) and by the Russian Foundation for Basic Research, project no. 19-02-00088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Volobuev.

Ethics declarations

The authors state that they have no conflict of interests.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volobuev, D.M., Makarenko, N.G. Solar Activity Predictability Horizons. Geomagn. Aeron. 60, 1017–1022 (2020). https://doi.org/10.1134/S0016793220080265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220080265

Navigation