Skip to main content
Log in

Electron Energy Spectra and e–e Bremsstrahlung from Anisotropic Electron Distributions in Extreme Solar Flares

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

We study the electron energy spectra of two powerful solar flares SOL2003-10-28T 1106:16 (GOES class X17.2) and SOL2002-07-23T 0018:16 (X4.8) analyzing the HXR and gamma-ray spectra obtained by RHESSI. Electron-electron (e–e) bremsstrahlung makes a significant contribution to the X-ray flux at energies above 500 keV. In X-ray flux calculations different electron pitch-angle distributions were considered: isotropic, quasi-transverse and quasi-longitudinal. It was shown that breaks in hard X-ray spectra occur on energies ε ≈ 100 keV with photon spectral-index difference Δγ ≥ 1 in the case of quasi-longitudinal anisotropy and hard power-law electron energy spectra. We deduce the parameters of non-thermal electrons energy spectra from RHESSI data for the extreme solar flares SOL2003-10-28 and SOL2002-07-23. After including e–e bremsstrahlung, the non-thermal electrons energy spectra obtained in the thick-target model can be fitted using power-law with spectral index δ ≈ 5. For the SOL2002-07-23 flare, there is a pronounced asymmetry towards the southern footpoint, starting from energies above 100 keV. The spatial separation of HXR sources at energies above 100 keV may be related to a feature of relativistic electron transport in flaring loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aschwanden, M.J., Physics of the Solar Corona, Berlin: Springer, 2004.

    Google Scholar 

  2. Charikov, Y.E., Melnikov, V.F., and Kudryavtsev, I.V., Intensity and polarization of the hard X-ray radiation of solar flares at the top and footpoints of a magnetic loop, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 8, pp. 1021–1031.

  3. Emslie, A.G., Kontar, E.P., Krucker, S., and Lin, R.P., RHESSI hard X-ray imaging spectroscopy of the large gamma-ray flare of 2002 July 23 2003, Astrophys. J., 2003, vol. 595, id L107.

  4. Gluckstern, R.L. and Hull, M.H., Jr., Polarization dependence of the integrated bremsstrahlung cross section, Phys. Rev., 1953, vol. 90, no. 6, pp. 1030–1035.

    Article  Google Scholar 

  5. Haug, E., Bremsstrahlung and pair production in the field of free electrons, Z. Naturforsch., A: Phys. Sci., 1975a, vol. 30, no. 9, pp. 1099–1113.

    Google Scholar 

  6. Haug, E., Contribution of electron–electron bremsstrahlung to solar hard X-radiation during flares, Sol. Phys., 1975b, vol. 45, pp. 453–458.

    Article  Google Scholar 

  7. Haug, E., On the use of nonrelativistic bremsstrahlung cross sections in astrophysics, Astron. Astrophys., 1997, vol. 326, pp. 417–418.

    Google Scholar 

  8. Haug, E., Photon spectra of electron–electron bremsstrahlung, Sol. Phys., 1998, vol. 178, pp. 341–351.

    Article  Google Scholar 

  9. Holman, G.D., Sui, L., Schwartz, R.A., and Emslie, A.G., Electron bremsstrahlung hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare, Astrophys. J., 2003, vol. 595, id L97.

  10. Holman, G.D., Aschwanden, M.J., Aurass, H., et al., Implications of X-ray observations for electron acceleration and propagation in solar flares, Space Sci. Rev., 2011, vol. 159, id 107.

  11. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., et al., The RHESSI imaging concept, Sol. Phys., 2002, vol. 210, pp. 61–86.

    Article  Google Scholar 

  12. Hurford, G.J., Schwartz, R.A., Kucker, S., et al., First gamma images of a solar flare, Astrophys. J., 2003, vol. 595, no. 2, pp. L77–L80.

    Article  Google Scholar 

  13. Kontar, E.P., Emslie, A.G., Massone, A.M., et al., Electron–electron bremsstrahlung emission and the inference of electron flux spectra in solar flares, Astrophys. J., 2007, vol. 670, no. 1, pp. 857–861.

    Article  Google Scholar 

  14. Leach, J. and Petrosian, V., Impulsive phase of solar flares. 1: Characteristics of high energy electrons, Astrophys. J., 1981, vol. 251, pp. 781–791.

    Article  Google Scholar 

  15. Lin, R.P., Dennis, B.R., and Hurford, G.J., The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Sol. Phys., 2002, vol. 210, pp. 3–32.

    Article  Google Scholar 

  16. Massone, A.M., Emslie, A.G., Kontar, E.P., et al., Anisotropic bremsstrahlung emission and the form of regularized electron flux spectra in solar flares, Astrophys. J., 2004, vol. 613, no. 2, pp. 1233–1240.

    Article  Google Scholar 

  17. Reznikova, V.E., Melnikov, V.F., Shibasaki, K., et al., 2002 August 24 limb flare loop: Dynamics of microwave brightness distribution, Astrophys. J., 2009, vol. 697, no. 1, pp. 735–746.

    Article  Google Scholar 

  18. Zharkova, V.V., Kuznetsov, A.A., and Siversky, T.V., Diagnostics of energetic electrons with anisotropic distributions in solar flares, Astron. Astrophys., 2010, vol. 512, id A8.

  19. Zheleznyakov, V.V., Elektromagnitnye volny v kosmicheskoi plazme (Electromagnetic Waves in Space Plasma), Moscow: Nauka, 1977.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Oparin.

Ethics declarations

There is no conflict of interest between the authors of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oparin, I.D., Charikov, Y.E., Ovchinnikova, E.P. et al. Electron Energy Spectra and e–e Bremsstrahlung from Anisotropic Electron Distributions in Extreme Solar Flares. Geomagn. Aeron. 60, 889–895 (2020). https://doi.org/10.1134/S0016793220070191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220070191

Navigation