Skip to main content
Log in

The Use of Coupling Functions in the Forecasting of the Dst-Index Amplitude with Adaptive Methods

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The possible use of artificial neural networks—classical multilayer perceptrons—with coupling functions to forecast time series of the Dst geomagnetic index is studied. The basic forecast is based on parameters of the solar wind and interplanetary magnetic field measured at the libration point L1 in an experiment on the ACE spacecraft. It is shown that the largest contribution to the improvement in forecast quality is made by the Bs and vBs functions, as well as the use of several coupling functions simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Akasofu, S.-I. and Chapman, S., Solar-Terrestrial Physics, Oxford: Clarendon, 1972.

    Google Scholar 

  2. Amata, E., Pallocchia, G., Consolini, G., Marcucci, M.F., and Bertello, I., Comparison between three algorithms for Dst predictions over the 2003–2005 period, J. Atmos. Sol-Terr. Phys., 2008, vol. 70, pp. 496–502.

    Article  Google Scholar 

  3. Barkhatov, N.A., Bellustin, N.S., Levitin, A.E., and Sakharov, S.Y., Comparison of efficiency of artificial neural networks for forecasting the geomagnetic activity index Dst, Radiophys. Quantum Electron., 2000, vol. 43, no. 5, pp. 347–355.

    Article  Google Scholar 

  4. Belov, A.V., Villoresi, J., Dorman, L.I., Eroshenko, E.A., Levitin, A.E., Parisi, M., Ptitsyna, N.G., Tyasto, M.I., Chizhenkov, V.A., Jucci, N., and Yanke, V.G., Effect of the space on operation of satellites, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 4, pp. 461–468.

  5. Bishop, C.M., Neural Networks for Pattern Recognition, Oxford: Clarendon, 1996.

    Google Scholar 

  6. Bothmer, V. and Daglis, I.A., Space Weather: Physics and Effects, Berlin: Springer, 2007. https://doi.org/10.1007/978-3-540-34578-7.

  7. Burton, R.K., McPherron, R.L., and Russel, C.T., An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 1975, vol. 80, pp. 4204–4214.

    Article  Google Scholar 

  8. Cole, D.G., Space weather: Its effects and predictability, Space Sci. Rev., 2003, vol. 107, pp. 295–302.

    Article  Google Scholar 

  9. Dolenko, S.A., Orlov, Yu.V., Persiantsev, I.G., and Shugai, Ju.S., Neural network algorithm for events forecasting and its application to space physics data, Lect. Notes Comput. Sci., 2005, vol. 3697, pp. 527–532.

    Article  Google Scholar 

  10. Efitorov, A.O., Burikov, S.A., Dolenko, T.A., et al., Comparison of the quality of solving the inverse problems of spectroscopy of multi-component solutions with neural network methods and with the method of projection to latent structures, Opt. Mem. Neural Networks (Inf. Opt.), 2015, vol. 24, no. 2, pp. 93–101.

  11. Efitorov, A.O., Myagkova, I.N., Shirokii, V.R., and Dolenko, S.A., The prediction of the Dst-index based on machine learning methods, Cosmic Res., 2018, vol. 56, no. 6, pp. 434–441.

    Article  Google Scholar 

  12. Farmer, J.D. and Sidorowich, J.J., Predicting chaotic time series, Phys. Rev. Lett., 1987, vol. 59, no. 8, pp. 845–848.

    Article  Google Scholar 

  13. Feldstein, Y.I., Dremukhina, L.A., Levitin, A.E., Mall, U., Alexeev, I.I., and Kalegaev, V.V., Energetics of the magnetosphere during the magnetic storm, Sol-Terr. Phys., 2003, vol. 65, no. 4, pp. 429–446.

    Google Scholar 

  14. Gorban’, A.N., Obuchenie neironnykh setei (Training Neural Networks), Moscow: ParaGraf, 1990.

  15. Kan, J.R. and Lee, L.C., Energy coupling and the solar wind dynamo, Geophys. Res. Lett., 1979, vol. 6, pp. 577–580.

    Article  Google Scholar 

  16. Kataoka, R. and Miyoshi, Y., Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit, Ann. Geophys., 2008, vol. 26, pp. 1335–1339.

    Article  Google Scholar 

  17. Khaikin, S., Neironnye seti: polnyi kurs (A Complete Course of Neural Networks), Moscow: Vil’yams, 2006.

  18. Lazutin, L.L., Mirovye i polyarnye magnitnye buri (World and Polar Magnetic Storms), Moscow: MGU, 2012.

  19. Lindsay, G.M., Russell, C.T., and Luhmann, J.G., Predictability of Dst index based upon solar wind conditions monitored inside 1 AU, J. Geophys. Res., 1999, vol. 104, no. A5, pp. 10335–10344.

    Article  Google Scholar 

  20. Machine Learning Techniques for Space Weather, Camporeale, E., Wing, S., and Johnson, J.R., Eds., Elsevier, 2018. https://doi.org/10.1016/C2016-0-01976-9.

  21. Myagkova, I.N., Shugai, Yu.S., Veselovskii, I.S., and Yakovchuk, O.S., Comparative analysis of recurrent high-speed solar wind streams influence on the radiation environment of near-earth space in April–July 20101, Sol. Syst. Res., 2013, vol. 47, no. 2, pp. 127–140.

    Article  Google Scholar 

  22. Myagkova, I.N., Dolenko, S.A., Efitorov, A.O., et al., Prediction of relativistic electron flux in the Earth’s outer radiation belt at geostationary orbit by adaptive methods, Geomagn. Aeron. (Engl. Transl.), 2017a, vol. 57, no. 1, pp. 8–15.

  23. Myagkova, I., Shiroky, V., and Dolenko, S., Prediction of geomagnetic indexes with the help of artificial neural networks, in E3S Web of Conferences, 2017b, 20:art.02011. https://doi.org/10.1051/e3sconf/20172002011.

  24. Newell, P.T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F.J., A nearly universal solar wind–magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 2007, vol. 112, A01206. https://doi.org/10.1029/2006JA012015

    Article  Google Scholar 

  25. Pallochia, G., Amata, E., Consolini, G., Marcucci, M.F., and Bertello, I., Geomagnetic Dst index forecast based on IMF data only, Ann. Geophys., 2006, vol. 24, pp. 989–999.

    Article  Google Scholar 

  26. Patra, S., Spencer, E., Horton, W., and Sojka, J., Study of Dst/ring current recovery times using the WINDMI model, J. Geophys. Res., 2011, vol. 116, A02212. https://doi.org/10.1029/2010JA015824

    Article  Google Scholar 

  27. Podladchikova, T.V. and Petrukovich, A.A., Extended geomagnetic storm forecast ahead of available solar wind measurements, Space Weather, 2012, vol. 10, id S07001. https://doi.org/10.1029/2012SW000786.

  28. Revallo, M., Valach, F., Hejda, P., and Bochniceket, J., Modeling of CME and CIR driven geomagnetic storms by means of artificial neural networks, Contrib. Geophys. Geod., 2015, vol. 45, no. 1, pp. 53–65.

    Article  Google Scholar 

  29. Schrijver, C.J., Kauristie, K., Aylward, A.D., et al., Understanding space weather to shield society: A global road map 772 for 2015–2025 commissioned by COSPAR and ILWS, Adv. Space Res., 2015, vol. 55, pp. 2745–2807.

    Article  Google Scholar 

  30. Stepanova, M.V. and Perez, P., Autoprediction of Dst index using neural network techniques and relationship to the auroral geomagnetic indices, Geofis. Int., 2000, vol. 39, no. 1, pp. 143–146.

    Google Scholar 

  31. Sugiura, M., Hourly values of equatorial Dst for the IGY, Ann. Int. Geophys. Year, 1964, vol. 35, pp. 9–45.

    Google Scholar 

  32. Temerin, M. and Li, X., Dst model for 1995–2002, J. Geophys. Res., 2006, vol. 111, A04221. https://doi.org/10.1029/2005JA011257

    Article  Google Scholar 

  33. Vasyliunas, V.M., Kan, J.R., Siscoe, G.L., and Akasofu, S.-I., Scaling relations governing magnetospheric energy transfer, Planet. Space Sci., 1982, vol. 30, pp. 359–365.

    Article  Google Scholar 

  34. Wu, J.-G. and Lundstedt, H., Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks, J. Geophys. Res., 1997, vol. 102, no. A7, pp. 14255–14268.

    Article  Google Scholar 

  35. Yermolaev, Yu.I. and Yermolaev, M.Yu., Solar and interplanetary sources of geomagnetic storms: Space weather aspects, Geofiz. Protsessy Biosfera, 2009, vol. 8, no. 1, pp. 5–35.

    Google Scholar 

  36. Zorich, V.A., Multidimensional Geometry, functions of very many variables, and probability, Theory Probab. Its Appl. (Engl. Transl.), 2015, vol. 59, no. 3, pp. 481–493.

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 16-17-00098-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Myagkova.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myagkova, I.N., Shirokii, V.R., Kalegaev, V.V. et al. The Use of Coupling Functions in the Forecasting of the Dst-Index Amplitude with Adaptive Methods. Geomagn. Aeron. 61, 138–147 (2021). https://doi.org/10.1134/S0016793220060092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220060092

Navigation