Skip to main content
Log in

Ionospheric Effects of Solar Flares in September 2017 and an Evaluation of Their Influence on Errors in Navigation Measurements

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The manifestation of the most powerful flares of class X9.3 and X8.2 recorded on September 6 and 10, 2017, respectively, in the total electronic content (TEC) of the ionosphere, are analyzed. GPS observations at midlatitude stations located in the conditions of an illuminated ionosphere were used as the initial data. The ionospheric response was determined from phase measurements of the TEC value along satellite flights over the observation station. A high linear correlation was found between the amplitude of the increase in TEC (ΔТЕС) during flares and the zenith angle of the Sun for longitudinally spaced stations. For the class-X9.3 flare, ΔТЕС exceeded 3 TECU, while for the X8.2 flare, the amplitude was almost two times smaller. It is shown that this is mainly due to the different positions of flares on the solar disk. The spatiotemporal response of the ionosphere to flares was analyzed with TEC maps with a time resolution of 5 min. Errors in navigation measurements that are caused by the effects of solar flares are identified and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Afraimovich, E.L., GPS global detection of the ionospheric response to solar flares, Radio Sci., 2000, vol. 35, pp. 1417–1424.

    Article  Google Scholar 

  2. Afraimovich, E.L. and Perevalova, N.P., GPS monitoring verkhnei atmosfery Zemli (GPS Monitoring of the Earth’s Upper Atmosphere), Irkutsk: Institut solnechno–zemnoi fiziki SO RAN: GU NTs RVKh VSNTs SO RAMN, 2006.

  3. Afraimovich, E.L., Altyntsev, A.T., Kosogorov, E.A., Larina, N.S., and Leonovich, L.A., Ionospheric effects of the solar flares of September 23, 1998 and July 29, 1999 as deduced from global GPS network data, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, no. 17, pp. 1841–1849.

    Article  Google Scholar 

  4. Berdermann, J., Kriegel, M., Banys, D., et al., Ionospheric response to the X9.3 flare on 6 September 2017 and its implication for navigation services over Europe, Space Weather, 2018, vol. 16, no. 10, pp. 1604–1615. https://doi.org/10.1029/2018SW001933

    Article  Google Scholar 

  5. García-Rigo, A., Hernández-Pajares, M., Juan, J.M., and Sanz, J., Solar flare detection system based on global positioning system data: First results, Adv. Space Res., 2007, vol. 39, no. 5, pp. 889–895.

    Article  Google Scholar 

  6. Hazarika, R., Bitap, R.K., and Pradip, K.B., Ionospheric response to X-class solar flares in the ascending half of the subdued solar cycle 24, J. Earth Syst. Sci., 2016, vol. 125, no. 6, pp. 1235–1244. https://doi.org/10.1007/s12040-016-0726-6

    Article  Google Scholar 

  7. Jacobsen, K.S. and Andalsvik, Y.L., Overview of the 2015 St. Patrick’s day storm and its consequences for RTK and PPP positioning in Norway, J. Space Weather Space Clim., 2016, vol. 6, no. 9. https://doi.org/10.1051/swsc/2016004

  8. Jacobsen, K.S. and Dähnn, M., Statistics of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes, J. Space Weather Space Clim., 2014, vol. 4, no. 27. https://doi.org/10.1051/swsc/2014024

  9. Kouba, J. and Héroux, P., Precise point positioning using IGS orbit and clock products, GPS Solutions, 2001, vol. 5, no. 2, pp. 12–28. https://doi.org/10.1007/PL00012883

    Article  Google Scholar 

  10. Krankowski, A., Shagimuratov, I.I., Baran, L.W., Ruzhin, Ya., and Tepenitzyn, N.Ya., Response of the ionosphere to the great solar flare on October 28, 2003, in European Geosciences Union General Assembly, 2003, poster presentation.

  11. Le, H., Liu, L., Chen, Y., and Wan, W., Statistical analysis of ionospheric responses to solar flares in the solar cycle 23, J. Geophys. Res.: Space, 2013, vol. 118, no. 1, pp. 576–582.

    Article  Google Scholar 

  12. Leonovich, L.A., Afraimovich, E.L., Romanova, E.B., and Taschilin, A.V., Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network, Ann. Geophys., 2002, vol. 20, no. 12, pp. 1935–1941.

    Article  Google Scholar 

  13. Leonovich, L.A., Tashchilin, A.V., and Portnyagina, O.Yu., Dependence of the ionospheric response on the solar flare parameters based on the theoretical modeling and GPS data, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 2, pp. 201–210.

  14. Liu, J.Y., Lin, C.H., Tsai, H.F., and Liou, Y.A., Ionospheric solar flare effects monitored by the ground-based GPS receivers: Theory and observation, J. Geophys. Res., 2004, vol. 109, A01307. https://doi.org/10.1029/2003JA009931

    Article  Google Scholar 

  15. Liu, J.Y., Lin, C.H., Chen, Y.I., Lin, Y.C., et al., Solar flare signatures of the ionospheric GPS total electron content, J. Geophys. Res., 2006, vol. 111, no. A5, A05308. https://doi.org/10.1029/2005JA011306

    Article  Google Scholar 

  16. Mahajan, K.K., Lodhi, N.K., and Upadhayaya, A.K., Observations of X-ray and EUV fluxes during X-class solar flares and response of upper ionosphere, J. Geophys. Res., 2010, vol. 115, no. A12, A12330. https://doi.org/10.1029/2010JA015576

    Article  Google Scholar 

  17. Mendillo, M., Klobuchar, J.A., Fritz, R.B., Rosa, A.V., Kersley, L., Yeh, K.C., et al., Behavior of the ionospheric f region during the great solar flare of August 7, 1972, J. Geophys. Res., 1974, vol. 79, pp. 665–672. https://doi.org/10.1029/JA079i004p00665

    Article  Google Scholar 

  18. Mitra, A.P., Ionospheric Effects of Solar Flares, Norwell, Mass.: D. Reidel, 1974.

    Book  Google Scholar 

  19. Pi, X., Mannucci, A.J., Lindqwister, U.J., and Ho, C.M., Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 1997, vol. 24, no. 18, pp. 2283–2286. https://doi.org/10.1029/97GL02273

    Article  Google Scholar 

  20. Ruzhin, Yu., Sinelnikov, V., Shagimuratov, I., and Kanonidi, Kh., Solar flare injection as analog of active experiment in an ionosphere, in 35th COSPAR Scientific Assembly Held 18–25 July 2004, Paris, 2004, p. 2667.

    Google Scholar 

  21. Shagimuratov, I.I., Chernyak, Yu.V., Zakharenkova, I. E., and Yakimova, G.A., Use of total electron content maps for analysis of spatial–temporal structures of the ionosphere, Russ. J. Phys. Chem. B, 2013, vol. 7, no. 5, pp. 656–662.

    Article  Google Scholar 

  22. Shagimuratov, I.I., Chernyak, Yu.V., Zakharenkova, I.E., Yakimova, G.A., Tepenitsyna, N.Yu., and Efishov, I.I., Internet-service for creating GPS/GLONASS maps of total electron content in the ionosphere for the European region, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 1, pp. 197–209.

    Article  Google Scholar 

  23. Shagimuratov, I.I., Yakimova, G.A., Tepenitsyna, N.Yu., Koltunenko, L.M., and Efishov, I.I., The effect of the solar flare on September 2017, in Atmosphere, Ionosphere, Safety. Proceedings of VI international Conference, Kaliningrad, 2018, part 2, pp. 119–123.

  24. Tsurutani, B.T., Judge, D.L., Guarnieri, F.L., et al., The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: Comparison to other Halloween events and the Bastille Day event, Geophys. Res. Lett., 2005, vol. 32, no. 3, L03S09. https://doi.org/10.1029/2004GL021475

    Article  Google Scholar 

  25. Xiong, B., Wan, W., Liu, L., et al., Ionospheric response to the X-class solar flare on 7 September 2005, J. Geophys. Res., 2011, vol. 116, no. A11, A11317. https://doi.org/10.1029/2011JAA016961

    Article  Google Scholar 

  26. Yamauchi, M., Sergienko, T., Enell, C.-F., et al., Ionospheric response observed by EISCAT during the 6–8 September 2017 space weather event: Overview, Space Weather, 2018, vol. 16, no. 9, pp. 1437–1450.

    Article  Google Scholar 

  27. Yasyukevich, Y.V., Voeykov, S.V., Zhivetiev, I.V., and Kosogorov, E.A., Ionospheric response to solar flares of C and M classes in January–February 2010, Cosmic Res., 2013, vol. 51, no. 2, pp. 114–123.

    Article  Google Scholar 

  28. Yasyukevich, Y., Astafyeva, E., Padokhin, A., et al., The 6 September 2017 X-class solar flares and their impacts on the ionosphere, GNSS, and HF radio wave propagation, Space Weather, 2018, vol. 16, no. 8, pp. 1013–1027.

    Article  Google Scholar 

  29. Zhang, D.H. and Xiao, Z., Study of ionospheric response to the 4B flare on 28 October 2003 using international GPS service network data, J. Geophys. Res., 2005, vol. 110, no. A3, A03307. https://doi.org/10.1029/2004JA010738

    Article  Google Scholar 

  30. Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., and Webb, F., Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 1997, vol. 102, no. B3, pp. 5005–5017.

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research, project no. 19-05-00570-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shagimuratov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shagimuratov, I.I., Zakharenkova, I.E., Tepenitsina, N.Y. et al. Ionospheric Effects of Solar Flares in September 2017 and an Evaluation of Their Influence on Errors in Navigation Measurements. Geomagn. Aeron. 60, 597–605 (2020). https://doi.org/10.1134/S0016793220050138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220050138

Navigation