Skip to main content
Log in

Comparison of the Intensity of the Nighttime Scattered Atmospheric Radiation in the Lyman-Alpha Line from OGO-4 Satellite Measurements and Calculations

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A theoretical model has been developed for the calculation of the intensity and flux of nighttime Lyman-alpha solar radiation at altitudes of the atmosphere that takes into account the multiple scatterings of this radiation by atmospheric atomic hydrogen. At heights of more than two Earth radii, the number density of atomic hydrogen is calculated by an empirical model based on the agreement of the results of calculations of the Lyman-alpha radiation intensity with the results of measurements of this intensity by TWINS 1 and 2 satellites instruments. At lower heights, it is calculated according to the NRLMSISE-00 empirical model. The temperature of neutral atmospheric components and the O2 number density are taken according to the NRLMSISE-00 model, and the absorption of Lyman-alpha radiation by molecular oxygen is taken into account. The results of measurements of the integral intensity of the Lyman-alpha radiation intensity by the wavelength instruments of the OGO-4 satellite at an height of 650 km are compared at night on January 31, 1968, at high solar activity with the results of model calculations of this intensity. It is shown that the 1.2-fold decrease in [H] in the NRLMSISE-00 model at heights of less than two Earth radii allows satisfactory agreement between the calculated and measured intensities of the radiation in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Aschwanden, M.J., Physics of the Solar Corona. An Introduction with Problems and Solutions, New York, Berlin: Springer, 2005.

    Google Scholar 

  2. Bishop, J., Transport of resonant atomic hydrogen emissions in the thermosphere and geocorona: Model description and applications, J. Quant. Spectrosc. Radiat. Transfer, 1999, vol. 61, no. 4, pp. 473–491. https://doi.org/10.1016/S0022-4073(98)00031-4

  3. Brasseur, G.P. and Solomon, S., Aeronomy of the Middle Atmosphere. Chemistry and Physics of Stratosphere and Mesosphere, Dordrecht: Springer, 2005.

    Book  Google Scholar 

  4. Bush, B.C. and Chakrabarti, S., Analysis of Lyman α and He I 584-Å airglow measurements using a spherical radiative transfer model, J. Geophys. Res., 1995a, vol. 100, no. A10, pp. 19609–19626. https://doi.org/10.1029/95JA01210

    Article  Google Scholar 

  5. Bush, B.C. and Chakrabarti, S., A radiative transfer model using spherical geometry and partial frequency redistribution, J. Geophys. Res., 1995b, vol. 100, no. A10, pp. 19627–19642. https://doi.org/10.1029/95JA01209

    Article  Google Scholar 

  6. Chabrillat, S. and Kockarts, G., Simple parameterization of the absorption of the solar Lyman-alpha line, Geophys. Res. Lett., 1997, vol. 24, no. 21, pp. 2659–2662. https://doi.org/10.1029/97GL52690

    Article  Google Scholar 

  7. Chabrillat, S. and Kockarts, G., Correction to “Simple parameterization of the absorption of the solar Lyman-alpha line” by Simon Chabrillat and Gaston Kockarts, Geophys. Res. Lett., 1998, vol. 25, no. 1, p. 79. https://doi.org/10.1029/97GL03569

    Article  Google Scholar 

  8. Chamberlain, J.W., Planetary coronae and atmospheric absorption, Planet. Space Sci., 1963, vol. 11, no. 8, pp. 901–960. https://doi.org/10.1016/0032-0633(63)90122-3

    Article  Google Scholar 

  9. Chandrasekhar, S., Radiative Transfer, Oxford Univ. Press, 1950; Moscow: IL, 1953.

  10. Hedin, A.E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 1991, vol. 96, no. 2, pp. 1159–1172. https://doi.org/10.1029/90JA02125

    Article  Google Scholar 

  11. Hummer, D.G., Non-coherent scattering: 1. The redistribution functions with Doppler broadening, Mon. Not. R. Astron. Soc., 1962, vol. 125, no. 1, pp. 21–37. https://doi.org/10.1093/mnras/125.1.21

    Article  Google Scholar 

  12. Imai, K., Suzuki, M., and Takahashi, C., Evaluation of Voigt algorithms for the ISS/JEM/SMILES L2 data processing system, Adv. Space Res., 2010, vol. 45, no. 3, pp. 669–675. https://doi.org/10.1016/j.asr.2009.11.005

    Article  Google Scholar 

  13. Irvine, W.M., Multiple scattering in planetary atmospheres, Icarus, 1975, vol. 25, no. 2, pp. 175–204. https://doi.org/10.1016/0019-1035(75)90019-6

    Article  Google Scholar 

  14. Jacobson, M.Z., Fundamentals of Atmospheric Modeling, New York: Cambridge University Press, 2005.

    Book  Google Scholar 

  15. Karttunen, H., Kroger, P., Oja, H., Poutanen, M., and Donner, K.J., Fundamental Astronomy, Berlin: Springer, 2017.

    Book  Google Scholar 

  16. Kononovich, E.V. and Moroz, V.I., Obshchii kurs astronomii (General Course of Astronomy), Moscow: Editorial URSS, 2004.

  17. Madronich, S., Photodissociation in the atmosphere 1. Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res., 1987, vol. 92, no. 8, pp. 9740–9752. https://doi.org/10.1029/JD092iD08p09740

    Article  Google Scholar 

  18. Meier, R.R. and Mange, P., Geocoronal hydrogen: An analysis of the Lyman-alpha airglow observed from OGO-4, Planet. Space Sci., 1970, vol. 18, no. 6, pp. 803–821. https://doi.org/10.1016/0032-0633(70)90080-2

    Article  Google Scholar 

  19. Mihalas, D., Stellar Atmospheres, San Francisco: W.H. Freeman, 1978a, part 1; Moscow: Mir, 1982a, vol. 1.

  20. Mihalas, D., Stellar Atmospheres, San Francisco: W.H. Freeman, 1978b, part 2; Moscow: Mir, 1982b, vol. 2.

  21. Pavlov, A.V., Photochemistry of ions at D-region altitudes of the ionosphere: A review, Surv. Geophys., 2014, vol. 35, no. 2, pp. 259–334. https://doi.org/10.1007/s10712-013-9253-z

    Article  Google Scholar 

  22. Pavlov, A.V., Influence of atmospheric solar radiation absorption on photodestruction of ions at D-region altitudes of the ionosphere, Surv. Geophys., 2016, vol. 37, no. 4, pp. 811–844. https://doi.org/10.1007/s10712-016-9371-5

    Article  Google Scholar 

  23. Pavlov, A.V. and Pavlova, N.M., Comparison of electron concentrations in the ionospheric E-Layer maximum in spring conditions obtained by calculations and Moscow ionosonde measurements, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 2, pp. 235–245.https://doi.org/10.7868/S0016794015020145

  24. Peraiah, A., An Introduction to Radiative Transfer: Methods and Applications in Astrophysics, New York: Cambridge University Press, 2002.

    Google Scholar 

  25. Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 2002, vol. 107, no. 12, pp. SIA15-1–SIA15-16. https://doi.org/10.1029/2002JA009430

  26. Reddmann, T. and Uhl, R., The H Lyman-α actinic flux in the middle atmosphere, Atmos. Chem. Phys., 2003, vol. 3, no. 1, pp. 225–231. https://doi.org/10.5194/acp-3-225-2003

    Article  Google Scholar 

  27. Rozanov, A., Rozanov, V., and Burrows, J.P., A numerical radiative transfer model for a spherical planetary atmosphere: Combined differential-integral approach involving the Picard iterative approximation, J. Quant. Spectrosc. Radiat. Transfer, 2001, vol. 69, no. 4, pp. 491–512. https://doi.org/10.1016/S0022-4073(00)00100-X

    Article  Google Scholar 

  28. Smith, F.L. and Smith, C., Numerical evaluation of Chapman’s grazing incidence integral ch(X, χ), J. Geophys. Res., 1972, vol. 77, no. 19, pp. 3592–3597. https://doi.org/10.1029/JA077i019p03592

    Article  Google Scholar 

  29. Sobolev, V.V., Kurs teoreticheskoi astrofiziki (Course of Theoretical Astrophysics), Moscow: Nauka, 1985.

  30. Stamnes, K., Thomas, G.E., and Stamnes, J.J., Radiative Transfer in the Atmosphere and Ocean, New York: Cambridge University Press, 2017.

    Book  Google Scholar 

  31. Strobel, D.F., Young, T.R., Meier, R.R., Coffey, T.P., and Ali, A.W., The nighttime ionosphere: E region and lower F region, J. Geophys. Res., 1974, vol. 79, no. 22, pp. 3171–3178. https://doi.org/10.1029/JA079i022p03171

    Article  Google Scholar 

  32. Thomas, G.E., Lyman α scattering in the Earth’s Hydrogen geocorona, 1, J. Geophys. Res., 1963, vol. 68, no. 9, pp. 2639–2660. https://doi.org/10.1029/JZ068i009p02639

    Article  Google Scholar 

  33. Tobiska, W.K., Revised solar extreme ultraviolet flux model, J. Atmos. Terr. Phys., 1991, vol. 53, nos. 11–12, pp. 1005–1018. https://doi.org/10.1016/0021-9169(91)90046-A

    Article  Google Scholar 

  34. Woods, T.N., Tobiska, W.K., Rottman, G.J., and Worden, J.R., Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations, J. Geophys. Res., 2000, vol. 105, no. 12, pp. 27195–27216. https://doi.org/10.1029/2000JA000051

    Article  Google Scholar 

  35. Zoennchen, J.H., Nass, U., and Fahr, H.J., Terrestrial exospheric hydrogen density distributions under solar minimum and solar maximum conditions observed by the TWINS stereo mission, Ann. Geophys., 2015, vol. 33, no. 3, pp. 413–426. https://doi.org/10.5194/angeo-33-413-2015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pavlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, A.V., Pavlova, N.M. Comparison of the Intensity of the Nighttime Scattered Atmospheric Radiation in the Lyman-Alpha Line from OGO-4 Satellite Measurements and Calculations. Geomagn. Aeron. 60, 489–494 (2020). https://doi.org/10.1134/S001679322004012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322004012X

Navigation