Skip to main content
Log in

Taylor Polynomial Model of the Geomagnetic Field in an Underground Gas Storage Area

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The study of normal geomagnetic background fields is the premise and basis for obtaining local geomagnetic anomalies caused by changes in underground pressure during gas injection and extraction in an underground gas storage (UGS) area. Measurements of the total magnetic field in an array consisting of sixty-three stations were acquired at a UGS and its surrounding areas. We completed field measurements at the stations using proton precession magnetometers (PPMs) with a sensitivity of 0.15 nT @ 1 Hz in April 2017 and March 2018. The geomagnetic background field model of the UGS area is calculated using the Taylor polynomial fitting method based on the data of all measured stations. A fourth-order Taylor polynomial model is appropriate for the UGS area according to a comprehensive comparative analysis of the mean square error and boundary distortion effect. The geomagnetic field distribution in the core area of the UGS can be better described by enlarging the network of repeat stations. The results provide a reference model for extracting the variations in the local magnetic field (LMF) caused by the underground pressure variations in the UGS area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. An, Z., Analyses and discussions of the geomagnetic field polynomial models, Chin. J. Geophys., 2001, vol. 44, pp. 45–50.

    Google Scholar 

  2. An, Z., Xu, Y., and Wang, Y., Derivation and analysis of the main geomagnetic field models in China for 1950–1980, Acta Geophys. Sin., 1991, vol. 34, pp. 585–593.

    Google Scholar 

  3. Chen, B., Ni, Z., Xu, R., Gu, Z., Yuan, J., and Wang, L., The geomagnetic field in China and neighboring regions for the 2010.0 epoch, Chin. J. Geophys., 2016, vol. 59, no. 4, pp. 1446–1456.

    Google Scholar 

  4. Chernogor, L.F., Geomagnetic disturbances accompanying the Great Japanese earthquake of March 11, 2011, Geomagn. Aeron. (Engl. Transl.), 2019a, vol. 59, no. 1, pp. 62–75.

  5. Chernogor, L.F., Possible generation of quasi-periodic magnetic precursors of earthquakes, Geomagn. Aeron. (Engl. Transl.), 2019b, vol. 59, no. 3, pp. 374–382.

  6. Di, C., Gu, Z., Soriano, B.M., Chen, B., Lao, C.G., Zhang, Y., Xin, C., and Gao, J., The study of magnetic field models for Philippines and its neighboring regions, Chin. J. Geophys., 2011, vol. 54, pp. 2085–2092.

    Article  Google Scholar 

  7. Gadirov, V.G. and Eppelbaum, L.V., Detailed gravity, magnetics successful in exploring Azerbaijan onshore areas, Oil Gas J., 2012, vol. 110, pp. 60–73.

    Google Scholar 

  8. Gadirov, V.G., Eppelbaum, L.V., Kuderavets, R.S., Menshov, O.I., and Gadirov, K.V., Indicative features of local magnetic anomalies from hydrocarbon deposits: Examples from Azerbaijan and Ukraine, Acta Geophys., 2018, vol. 66, pp. 1463–1483.

    Article  Google Scholar 

  9. Gao, J., An, Z., Gu, Z., Han, W., Zhan, Z., and Yao, T., Selections of the geomagnetic field and calculation of the geomagnetic anomalous field, Chin. J. Geophys., 2005, vol. 48, pp. 56–62.

    Google Scholar 

  10. Goertz-Allmann, B.P., Goertz, A., and Wiemer, S., Stress drop variations of induced earthquakes at the Basel geothermal site, Geophys. Res. Lett., 2011, vol. 38, L09308.

    Article  Google Scholar 

  11. Gu, Z., An, Z., Gao, J., Zhan, Z., Yao, T., Han, W., and Chen, B., Computation and analysis of the geomagnetic field model in China and its adjacent area for 2003, Acta Geophys. Sin., 2006a, vol. 28, pp. 141–149.

    Google Scholar 

  12. Gu, Z., Zhan, Z., Gao, J., Han, W., An, Z., Yao, T., and Chen, B., Geomagnetic survey and geomagnetic model research in China, Earth Planets Space, 2006b, vol. 58, pp. 741–750.

    Article  Google Scholar 

  13. Kotzé, P.B. and Korte, M., Morphology of the southern African geomagnetic field derived from observatory and repeat station survey observations: 2005–2014, Earth Planets Space, 2016, vol. 68. https://doi.org/10.1186/s40623-016-0403-7

  14. Kurazhkovskii, A.Yu., Kurazhkovskaya, N.A., and Klain, B.I., Variations in the geomagnetic field intensity with characteristic times of five and one million years, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 2, pp. 249–255.

  15. Liu, Q., Chan, L., Liu, Q., Li, H., Wang, F., Zhang, S., Xia, X., and Cheng, T., Relationship between magnetic anomalies and hydrocarbon microseepage above the Jingbian gas field, Ordos basin, China, Am. Assoc. Petrol. Geol. Bull., 2004, vol. 88, pp. 241–251.

    Google Scholar 

  16. Machel, H.G. and Burton, E.A., Causes and spatial distribution of anomalous magnetization in hydrocarbon seepage environments, Am. Assoc. Petrol. Geol. Bull., 1991, vol. 75, pp. 1864–1876.

    Google Scholar 

  17. Mandea, M. and Korte, M., Geomagnetic Observations and Models, Dordrecht: Springer, 2011.

    Book  Google Scholar 

  18. Ogawa, T., A reassessment of the anomalous geomagnetic diurnal variation two months prior to the 2011 Tohoku earthquake, Japan (Mw 9.0), Ann. Geophys., 2017, vol. 60, no. 6, GM671.

    Google Scholar 

  19. Riabova, S.A., Features of geomagnetic field secular variation at the midlatitude Mikhnevo and Belsk observatories, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 1, pp. 115–126.

  20. Sabaka, T.J., Tøffner-Clausen, L., Olsen, N., and Finlay, C.C., A comprehensive model of Earth’s magnetic field determined from 4 years of Swarm satellite observations, Earth Planets Space, 2018, vol. 70. https://doi.org/10.1186/s40623-018-0896-3

  21. Shapiro, S.A., Dinske, C., and Kummerow, J., Probability of a given-magnitude earthquake induced by a fluid injection, Geophys. Res. Lett., 2007, vol. 34, L22314.

    Article  Google Scholar 

  22. Thébault, E., Purucker, M., Whaler, K.A., Langlais, B., and Sabaka, T.J., The Magnetic field of the Earth’s lithosphere, Space Sci. Rev., 2010, vol. 155, pp. 95–127.

    Article  Google Scholar 

  23. Thébault, E., Finlay, C.C., and Beggan, C.D., International Geomagnetic Reference Field: the twelfth generation, Earth Planets Space, 2015, vol. 67. https://doi.org/10.1186/s40623-015-0228-9

  24. Wang, Z., Chen, B., Yuan, J., Yang, F., Jia, L., and Wang, C., Localized geomagnetic field anomalies in an underground gas storage, Phys. Earth Planet. Int., 2018, vol. 283, pp. 92–97.

    Article  Google Scholar 

  25. Wang, Z., Yuan, J., Chen, B., Chen, S., Wang, C., and Mao, F., Local magnetic field changes during gas injection and extraction in an underground gas storage, Geophys. J. Int., 2019, vol. 217, pp. 271–279.

    Article  Google Scholar 

  26. Xu, W., Xia, G., An, Z., Chen, G., Zhang, F., Wang, Y., Tian, Y., Wei, Z., Ma, S., and Chen, H., Magnetic survey and ChinaGRF 2000, Earth Planets Space, 2003, vol. 55, pp. 215–217.

    Article  Google Scholar 

  27. Xu, W., Qu, J., and Du, A., Geomagnetic field modelling for the globe and a limited region, Prog. Geophys., 2011, vol. 26, pp. 398–415.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Geomagnetic Network of China for providing the geomagnetic field data for the analysis of geomagnetic secular variation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhendong Wang, Bin Chen or Jiehao Yuan.

Ethics declarations

This work was supported by the Special Fund of the Institute of Geophysics, China Earthquake Administration, project no. DQJB16B04 and the Special Fund for Earthquake Research of CEA, project no. 201508013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhendong Wang, Chen, B. & Yuan, J. Taylor Polynomial Model of the Geomagnetic Field in an Underground Gas Storage Area. Geomagn. Aeron. 60, 373–380 (2020). https://doi.org/10.1134/S0016793220030172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220030172

Navigation