Skip to main content
Log in

Medium-Term Prediction of Relativistic Electron Fluxes in a Geostationary Orbit Using Machine Learning Methods Based on Observations of Solar Coronal Holes

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The paper proposes a model for predicting the integral daily fluxes (fluences) of relativistic electrons (RE) (E > 2 MeV) of the Earth's outer radiation belt in a geostationary orbit using images of the Sun in the ultraviolet range. The results show that the accuracy of the forecast of the RE fluxes three or four days ahead increases significantly when adding the predicted values of solar wind speed at the Earth’s orbit, obtained by processing images of the Sun in the UV range from AIA instrument, SDO Observatory, to the input parameters of the forecasting model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Baker, D.N., McPherron, R.L., Cayton, T.E., and Kebesadel, R.W., Linear prediction filter analysis of relativistic electron properties at 6.6 RE, J. Geophys. Res., 1990, vol. 95, no. A9, pp. 15133–15140.

    Article  Google Scholar 

  2. Belov, A.V., Villoresi, J., Dorman, L.I., Eroshenko, E.A., Levitin, A.E., Parisi, M., Ptitsyna, N.G., Tyasto, M.I., Chizhenkov, V.A., Jucci, N., and Yanke, V.G., Effect of the space on operation of satellites, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 4, pp. 461–468.

  3. Bortnik, J., Chu, X., Ma, Q., Li, W., Zhang, X., Thorne, R.M., et al., Artificial neural networks for determining magnetospheric conditions, in Machine Learning Techniques for Space Weather, Camporeale, E., Wing, S., and Johnson, J.R., Eds., Elsevier, 2018, pp. 179–300.

    Google Scholar 

  4. Cole, D.G., Space weather: Its effects and predictability, Space Sci. Rev., 2003, vol. 107, pp. 295–302.

    Article  Google Scholar 

  5. Friedel, R.H., Reeves, W.G.P., and Obara, T., Relativistic electron dynamics in the inner magnetosphere: A review, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, pp. 265–283.

    Article  Google Scholar 

  6. Fukata, M., Taguchi, S., Okuzawa, T., and Obara, T., Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: Effects of recurring substorms, Ann. Geophys., 2002, vol. 20, no. 7, pp. 947–951.

    Article  Google Scholar 

  7. Harvey, J.W. and Sheeley, N.R., Coronal holes, solar wind streams, and geomagnetic activity during the new sunspot cycle, Sol. Phys., 1978, vol. 59, pp. 159–173.

    Article  Google Scholar 

  8. Khaikin, S., Neironnye seti: polnyi kurs (Neural Networks: A Complete Course), Moscow: Vil’yams, 2006.

  9. Koons, H.C. and Gorney, D.J., A neural network model of the relativistic electron flux at geosynchronous orbit, J. Geophys. Res., 1990, vol. 96, pp. 5549–5556.

    Article  Google Scholar 

  10. Krista, L.D. and Gallagher, P.T., Automated coronal hole detection using local intensity thresholding techniques, Sol. Phys., 2009, vol. 256, no. 1, pp. 87–100.

    Article  Google Scholar 

  11. Kudela, K., Space weather near earth and energetic particles: Selected results, J. Phys.: Conf. Ser., 2013, vol. 409, no. 1, id 012017. https://doi.org/10.1088/1742-6596/409/1/012017

  12. Ling, A.G., Ginet, G.P., Hilmer, R.V., and Perry, K.L., A neural network-based geosynchronous relativistic electron flux forecasting model, Space Weather, 2010, vol. 8, id S09003. https://doi.org/10.1029/2010SW000576

  13. Machine Learning Techniques for Space Weather, Camporeale, E., Wing, S., and Johnson, J.R., Eds., Elsevier, 2018. https://doi.org/10.1016/C2016-0-01976-9

    Google Scholar 

  14. Myagkova, I.N., Panasyuk, M.I., Denisov, Yu.I., et al., Correlation between the Earth’s outer radiation belt dynamics and solar wind parameters at the solar minimum according to EMP instrument data onboard the CORONAS-Photon satellite, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 7, pp. 897–901.

  15. Myagkova, I.N., Shugai, Yu.S., Veselovskii, I.S., and Yakovchuk, O.S., Comparative analysis of recurrent high-speed solar wind streams influence on the radiation environment of near-earth space in April–July 2010, Sol. Syst. Res., 2013, vol. 47, no. 2, pp. 127–140.

    Article  Google Scholar 

  16. Myagkova, I.N., Dolenko, S.A., Efitorov, A.O., Shirokii, V.R., and Sentemova, N.S., Prediction of relativistic electron flux in the Earth’s outer radiation belt at geostationary orbit by adaptive methods, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 1, pp. 8–15.

  17. Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., and McIntosh, P.S., Coronal holes as sources of solar wind, Sol. Phys., 1976, vol. 46, pp. 303–322.

    Article  Google Scholar 

  18. Paulikas, G.A. and Blake, J.B., Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit, in Quantitative Modeling of Magnetospheric Processes, Olson, W.P., Ed., Washington, DC: AGU, 1979, pp. 180–202. https://doi.org/10.1029/GM021p0180

    Google Scholar 

  19. Pulkkinen, T., Space weather: Terrestrial perspective, Living Rev. Sol. Phys., 2007, vol. 4, id 1. http://www.livingreviews.org/lrsp-2007-1. Accessed September 18, 2007.

  20. Reeves, G.D., McAdams, K.L., Friedel, R.H.W., and O’Brien, T.P., Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 2003, vol. 30, 1529. https://doi.org/10.1029/2002GL016513

    Article  Google Scholar 

  21. Reeves, G.D., Morley, S.K., Friedel, R.H.W., Henderson, M.G., Cayton, T.E., Cunningham, G., Blake, J.B., Christensen, R.A., and Thomsen, D., On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited, J. Geophys. Res., 2011, vol. 116, A02213. https://doi.org/10.1029/2010JA015735

    Article  Google Scholar 

  22. Romanova, N.V., Pilipenko, V.A., Yagova, N.V., and Belov, A.V., Statistical correlation of the rate of failures on geosynchronous satellites with fluxes of energetic electrons and protons, Cosmic Res., 2005, vol. 43, no. 3, pp. 179–185.

    Article  Google Scholar 

  23. Shin, D.-K., Lee, D.-Y., Kim, K.-C., Hwang, J., and Kim, J., Artificial neural network prediction model for geosynchronous electron fluxes: Dependence on satellite position and particle energy, Space Weather, 2016, vol. 14, no. 4, pp. 313–321.

    Article  Google Scholar 

  24. Shugay, Y.S., Veselovsky, I.S., Seaton, D.B., and Berghmans, D., Hierarchical approach to forecasting recurrent solar wind streams, Sol. Syst. Res., 2011, vol. 45, pp. 546–556.

    Article  Google Scholar 

  25. Shugay, Yu., Slemzin, V., Rodkin, D., Yermolaev, Yu., and Veselovsky, I., Influence of coronal mass ejections on parameters of high-speed solar wind: A case study, J. Space Weather Space Clim., 2018, vol. 8, no. A28. https://doi.org/10.1051/swsc/2018015

  26. Simms, L.E., Engebretson, M.J., Pilipenko, V., Reeves, G.D., and Clilverd, M., Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 3181–3197. https://doi.org/10.1002/2016JA022414

    Article  Google Scholar 

  27. Turner, D.L., Shprits, Y., Hartinger, M., and Angelopoulos, V., Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, Nat. Phys., 2012, vol. 8, pp. 208–212.

    Article  Google Scholar 

  28. Varotsou, A., Boscher, D., Bourdarie, S., Horne, R.B., Glauert, S.A., and Meredith, N.P., Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler-mode chorus waves, Geophys. Res. Lett., 2005, vol. 32, L19106. https://doi.org/10.1029/2005GL023282

    Article  Google Scholar 

  29. Vršnak, B., Temmer, M., and Veronig, A.M., Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters, Sol. Phys., 2007, vol. 240, pp. 315–330.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 16-17-00098-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Myagkova.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myagkova, I.N., Shugai, Y.S., Kalegaev, V.V. et al. Medium-Term Prediction of Relativistic Electron Fluxes in a Geostationary Orbit Using Machine Learning Methods Based on Observations of Solar Coronal Holes. Geomagn. Aeron. 60, 279–288 (2020). https://doi.org/10.1134/S0016793220030123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220030123

Navigation