Balling Jr., R.C. and Hildebrandt, M., Evaluation of the linkage between Schumann resonance peak frequency values and global and regional temperatures, Clim. Res., 2000, vol. 16, no. 1, pp. 31–36.
Article
Google Scholar
Balser, M. and Wagner, C.A., Observations of Earth–ionosphere cavity resonances, Nature, 1960, vol. 188, no. 4751, pp. 638–641.
Article
Google Scholar
Barr, R., Jones, D.L. and Rodger, C.J., ELF and VLF radio waves, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, nos. 17–18, pp. 1689–1718.
Article
Google Scholar
De, S.S., Schumann resonance—Its different aspects and latest wonders, Indian J. Radio Space Phys., 2007, vol. 36, no. 5, p. 359.
Google Scholar
De, S.S., Saha, A.K. and De, M., Measurement of ELF emission in the upper atmosphere over Kolkata due to Schumann resonances, Indian J. Radio Space Phys., 2004, vol. 33, p. 32.
Google Scholar
De, S.S., De, B.K., Sarkar, B.K., et al., Analyses of Schumann resonance spectra from Kolkata and their possible interpretations, Indian J. Radio Space Phys., 2009, vol. 38, p. 208.
Google Scholar
De, S.S., De, B.K., Bandyopadhyay, B., Paul, S., Haldar, D.K. and Barui, S., Studies on the shift in the frequency of the first Schumann resonance mode during a solar proton event, J. Atmos. Sol.-Terr. Phys., 2010, vol. 72, nos. 11–12, pp. 829–836.
Article
Google Scholar
Farrell, B.F., Equable climate dynamics, J. Atmos. Sci., 1990, vol. 47, no. 24, pp. 2986–2995.
Article
Google Scholar
Greifinger, C., and Greifinger, P., Approximate method for determining ELF eigenvalues in the Earth–ionosphere waveguide, Radio Sci., 1978, vol. 13, no. 5, pp. 831–837. https://pe2bz.philpem.me.uk/Comm/ELF-VLF/Projects/ Receiver/E-Field-Whistler/S-000-Shumann-E-Field/ p5.html.
Article
Google Scholar
Kumar, K.K., Rajagopalan, B., Hoerling, M., et al., Unraveling the mystery of Indian monsoon failure during El Niño, Science, 2006, vol. 314, pp. 115–119.
Article
Google Scholar
Nickolaenko, A.P. and Hayakawa, M., Resonances in the Earth–Ionosphere Cavity, Springer, 2002.
Google Scholar
Nickolaenko, A.P. and Rabinowicz, L.M., Study of the annual changes of global lightning distribution and frequency variations of the first Schumann resonance mode, J. Atmos. Sol.-Terr. Phys., 1995, vol. 57, no. 11, pp. 1345–1348.
Article
Google Scholar
Nickolaenko, A.P., Sátori, G., Zieger, B., et al., Parameters of global thunderstorm activity deduced from the long-term Schumann resonance records, J. Atmos. Sol.-Terr. Phys., 1998, vol. 60, no. 3, pp. 387–399.
Article
Google Scholar
Nickolaenko, A.P., Hayakawa, M. and Hobara, Y., Long-term periodical variations in global lightning activity deduced from the Schumann resonance monitoring, J. Geophys. Res.: Atmos., 1999, vol. 104, no. D22, pp. 27585–27591.
Article
Google Scholar
Pedatella, N.M., Lei, J., Larson, K.M. and Forbes, J.M., Observations of the ionospheric response to the 15 December 2006 geomagnetic storm: Long-duration positive storm effect, J. Geophys. Res.: Space Phys., 2009, vol. 114, no. A12.
Price, C., ELF electromagnetic waves from lightning: The Schumann resonances, Atmosphere, 2016, vol. 116, no. 7. https://www.mdpi.com/2073-4433/7/9/116/htm. https://doi.org/10.3390/atmos7090116
Price, C., Pechony, O. and Greenberg, E., Schumann resonances in lightning research, Lightning Res., 2007, vol. 1, pp. 1–15.
Google Scholar
Roldugin, V.C., Maltsev, Y.P., Vasiljev, A.N., et al., Changes of Schumann resonance parameters during the solar proton event of 14 July 2000, Adv. Earth Space Sci., 2003, vol. 108, no. A3, 1103.
Google Scholar
Sátori, G., Ortega, P., Guha, A. and Williams, E., Possible relation between the tropical lightning chimneys and the wavenumber-4 structure in the thermosphere/ionosphere, 2nd TEA–IS Summer School, June 23rd–June 27th 2014, Collioure, France, 2014.
Sekiguchi, M., Hobara, Y. and Hayakawa, M., Diurnal and seasonal variations in the Schumann resonance parameters at Moshiri, Japan, J. Atmos. Electr., 2008, vol. 28, no. 1, pp. 1–10.
Google Scholar
Schlegel, K. and Füllekrug, M., Schumann resonance parameter changes during high-energy particle precipitation, J. Geophys. Res.: Space Phys., 1999, vol. 104, no. A5, pp. 10111–10118.
Article
Google Scholar
Schumann, W.O., Über die Dämpfung der elektromagnetischen Eigenschwingungen des Systems Erde–Luft–Ionosphäre, Z. Naturforschung, 1952, vol. 7, nos. 3–4, pp. 250–252.
Google Scholar
Sentman, D.D., Wescott, E.M., Osborne, D.L., et al., Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites, Geophys. Res. Lett., 1995, vol. 22, no. 10, pp. 1205–1208.
Article
Google Scholar
Wan, W., Liu, L., Pi, X., et al., Wavenumber4 patterns of the total electron content over the low latitude ionosphere, Geophys. Res. Lett., 2008, vol. 35, no. 12.
Williams, E.R., The Schumann resonance: A global tropical thermometer, Science, 1992, vol. 256, no. 5060, pp. 1184–1187.
Article
Google Scholar
Xiang, B., Wang, B. and Li, T., A new paradigm for the predominance of standing central Pacific warming after the late 1990s, Clim. Dyn., 2013, vol. 41, no. 2, pp. 327–340.
Article
Google Scholar
Yatsevich, E.I., Nickolaenko, A.P. and Pechonaya, B.O., Diurnal and seasonal variations in the intensities and peak frequencies of the first three Schumann-resonance modes, Radiophys. Quantum Electron., 2008, vol. 51, no. 8, pp. 528–538.
Article
Google Scholar