Skip to main content
Log in

Mirror Asymmetry and Helicity Invariants in Astrophysical Dynamos

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract—

The mirror asymmetry of hydrodynamics flows and magnetic fields plays a crucial role in magnetic field evolution in various celestial bodies including the Earth, Sun and Milky Way galaxy. A natural measure of the mirror asymmetry is associated with the Gauss invariant, i.e. the linkage number of vortex and magnetic lines. We consider the relation between magnetic field generation and the knotting of vortex and magnetic lines in terms of hydrodynamic and magnetic helicities. Higher helicity invariants known in topology generalize in various ways the Gauss invariant. We argue that these higher helicities are less important for magnetic field evolution than the classical Gauss invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akhmet’ev, P.M., Quadratic magnetic helicity and magnetic energy, Proc. Steklov Math. Inst., 2012, vol. 278, pp. 16–28.

    Article  Google Scholar 

  2. Anufriev, A.P., Reshetnyak, M.Yu., and Sokoloff, D.D., Estimating the dynamo number for a model of the turbulent-effect in the Earth’s liquid core, Geomagn. Aeron. (Engl. Transl.), 1997, vol. 37, no. 5, pp. 628–631.

  3. Arnold, V.I. and Khesin, B.A., Topological Methods in Hydrodynamics, New York: Springer, 1998.

    Book  Google Scholar 

  4. Babcock, H.W., The topology of the Sun’s magnetic field and the 22-year cycle, Astrophys. J., 1961, vol. 133, pp. 572–587.

    Article  Google Scholar 

  5. Baer, K.E., v.: Über ein allgemeines Gesetz in der Gestaltung der Flußbetten. Kaspische Stud., 1860, vol. 8, pp. 1–6.

    Google Scholar 

  6. Beck, R., Brandenburg, A., Moss, D., Shukurov, A., and Sokoloff, D., Galactic magnetism: recent developments and perspectives, Ann. Rev. Astron. Astrophys., 1996, vol. 34, pp. 155–206.

    Article  Google Scholar 

  7. Brandenburg, A., Why coronal mass ejections are necessary for the dynamo, Highlights Astron., 2007, vol. 14, pp. 291–292.

    Google Scholar 

  8. Brandenburg, A., Sokoloff, D., and Subramanian, K., Current status of turbulent dynamo theory. From large-scale to small-scale dynamos, Space Sci. Rev., 2012, vol. 169, pp. 123–157.

    Article  Google Scholar 

  9. Choudhuri, A.R., Schüssler, M., and Dikpati, M., The solar dynamo with meridional circulation, Astron. Astrophys., 1995, vol. 303, pp. L29–L32.

    Google Scholar 

  10. Dikpati, M. and Gilman, P.A., Flux-transport dynamos with alpha-effect from global instability of tachocline differential rotation: A solution for magnetic parity selection in the Sun, Astrophys. J., 2001, vol. 559, pp. 428–442.

    Article  Google Scholar 

  11. Einstein, A., Die Ursache der Mäanderbildung der flußläufe und des sogenannten Baerschen Gesetzes, Naturwissenschaften, 1926, vol. 14, no. 11, pp. 223–224.

    Article  Google Scholar 

  12. Enciso, A. and Peralta-Salas, D., and Torres de Lizaur, F., Helicity is the only integral invariant of volume-preserving transformations, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, pp. 2035–2040.

    Article  Google Scholar 

  13. Frisch, U., Turbulence: The Legacy of A.N. Kolmogorov, Cambridge Univ., 1995.

    Book  Google Scholar 

  14. Gailitis, A., Lielausis, O., Dement’ev, S., et al., Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility, Phys. Rev. Lett., 2000, vol. 84, pp. 4365–4368.

    Article  Google Scholar 

  15. Gruzinov, A.V. and Diamond, P.H., Self-consistent theory of mean-field electrodynamics, Phys. Rev. Lett., 1994, vol. 72, pp. 1651–1653.

    Article  Google Scholar 

  16. Kolmogorov, A., The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, pp. 301–305.

    Google Scholar 

  17. Komm, R., Gosain, S., and Pevtsov, A.A., Hemispheric distribution of subsurface kinetic helicity and its variation with magnetic activity, Sol. Phys., 2014, vol. 289, pp. 2399–2418.

    Article  Google Scholar 

  18. Krause, F., Eine Lösung des Dynamoproblems auf der Grundlage einer linearen Theorie der magnetohydrodynamischen Turbulenz, Doctoral Dissertation, University of Jena, 1967.

  19. Krause, F. and Rädler, K.-H., Mean-Field Magnetohydrodynamics and Dynamo Theory, Oxford: Pergamon, 1980.

    Google Scholar 

  20. Kulsrud, R.M. and Anderson, S.W., The spectrum of random magnetic fields in the mean field dynamo theory of the galactic magnetic field, Astrophys. J., 1992, vol. 396, pp. 606–630.

    Article  Google Scholar 

  21. Lee, T.D. and Yang, C.N., Question of parity conservation in weak interactions, Phys. Rev., 1956, vol. 104, pp. 254–258.

    Article  Google Scholar 

  22. Leighton, R.B., Transport of magnetic fields on the sun, Astrophys. J., 1964, vol. 140, pp. 1547–1562.

    Article  Google Scholar 

  23. Moffatt, H.K., The degree of knottedness of tangled vortex lines, J. Fluid Mech., 1969, vol. 35, pp. 117–129.

    Article  Google Scholar 

  24. Moffatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Univ., 1978.

    Google Scholar 

  25. Parker, E.N., Hydromagnetic dynamo models, Astrophys. J., 1955, vol. 122, pp. 293–314.

    Article  Google Scholar 

  26. Parker, E.N., Cosmical Magnetic Fields: Their Origin and Their Activity, Oxford: Clarendon, 1979.

    Google Scholar 

  27. Parker, E.N., Conversations on Electric and Magnetic Fields in the Cosmos, Princeton Univ., 2007.

    Book  Google Scholar 

  28. Redford, D.B., Akhenaten: The Heretic King, Princeton Univ., 1984.

    Google Scholar 

  29. Ricca, R.L. and Nipoti, B., Gauss’ linking number revisited, J. Knot Theory Ramifications, 2011, vol. 20, no. 10, pp. 1325–1343.

    Article  Google Scholar 

  30. Ruzmaikin, A. and Akhmetiev, P., Topological invariants of magnetic fields, and the effect of reconnections, Phys. Plasmas, 1994, vol. 1, pp. 331–336.

    Article  Google Scholar 

  31. Ruzmaikin, A.A., Shukurov, A.M., and Sokoloff, D.D., Magnetic Fields of Galaxies, Dordrecht: Kluwer, 1988.

    Book  Google Scholar 

  32. Shukurov, A., Sokoloff, D., Subramanian, K., and Brandenburg, A., Galactic dynamo and helicity losses through fountain flow, Astron. Astrophys., 2006, vol. 448, L33–L36.

    Article  Google Scholar 

  33. Sokoloff, D.D., Stepanov, R.A., and Frick, P.G., Dynamos: from an astrophysical model to laboratory experiments, Phys.-Usp., 2014, vol. 57, pp. 292–311.

    Article  Google Scholar 

  34. Sokoloff, D.D., Illarionov, E.A., and Akhmet’ev, P.M., Higher helicity invariants and solar dynamo, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 1, pp. 113–118.

  35. Sokoloff, D., Akhmet’ev, P., and Illarionov, E., Magnetic helicity and higher helicity invariants as constraints for dynamo action, Fluid Dyn. Res., 2018, vol. 50, id 011407.

  36. Steenbeck, M., Krause, F., and Rädler, K.-H., Berechnung der mittleren Lorentz-Feldstärke \(vxB\) für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung, Z. Naturforsch. A, 1966, vol. 21, no. 4, pp. 369–376.

    Google Scholar 

  37. Stenflo, J.O. and Kosovichev, A.G., Bipolar magnetic regions on the sun: Global analysis of the SOHO/MDI data set, Astrophys. J., 2012, vol. 745, id 129.

  38. Stepanov, R., Volk, R., Denisov, S., et al., Induction, helicity, and alpha effect in a toroidal screw flow of liquid gallium, Phys. Rev. E, 2006, vol. 73, id 046310.

  39. Stieglitz, R. and Müller, U., Experimental demonstration of a homogeneous two-scale dynamo, Phys. Fluids, 2001, vol. 13, pp. 561–564.

    Article  Google Scholar 

  40. Tamm, I.E., Fundamentals of the Theory of Electricity, Moscow: Mir, 1966.

  41. Tlatov, A., Illarionov, E., Sokoloff, D., and Pipin, V., A new dynamo pattern revealed by the tilt angle of bipolar sunspot groups, Mon. Not. R. Astron. Soc., 2013, vol. 432, pp. 2975–2984.

    Article  Google Scholar 

  42. Vainshtein, S.I. and Cattaneo, F., Nonlinear restrictions on dynamo action, Astrophys. J., 1992, vol. 393, pp. 165–171.

    Article  Google Scholar 

  43. Zaslavsky, G.M., Chaos in Dynamic Systems, New York: Harwood, 1985.

    Google Scholar 

  44. Zaslavsky, G.M., Sagdeev, R.Z., Usikov, D.A., and Chemikov, A.A., Weak Chaos and Quasi-Regular Patterns, Cambridge Univ., 1991.

    Book  Google Scholar 

  45. Zeldovich, Ya.B., Ruzmaikin, A.A., and Sokoloff, D.D., Magnetic Fields in Astrophysics, New York: Gordon and Breach, 1983.

    Google Scholar 

  46. Zhang, H., Sakurai, T., Pevtsov, A., et al., A new dynamo pattern revealed by solar helical magnetic fields, Mon. Not. R. Astron. Soc., 2010, vol. 402, pp. L30–L33.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Critical reading of the manuscript by Dr. D. Moss (Manchester, UK) is acknowledged.

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-02-00085 and the Foundation for Support of Theoretical Physics Studies Basis, project no. 18-1-77-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Sokoloff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokoloff, D.D. Mirror Asymmetry and Helicity Invariants in Astrophysical Dynamos. Geomagn. Aeron. 59, 799–805 (2019). https://doi.org/10.1134/S0016793219070223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219070223

Navigation