Skip to main content
Log in

Latitudinal and Longitudinal Variations of Earth’s Magnetic Force on Electrified Hydrometeors

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In this study, a hypothesis is proposed about the possible effect of Geomagnetic field (GMF) on the charge structure of a thundercloud based on Lorentz force equation and Fleming’s right-hand rule. To prove this hypothesis, a simulation using the12th International Geomagnetic Reference Field (IGRF) model has been made. In this simulation, latitudinal and longitudinal variations of Earth’s magnetic force on electrified hydrometeor are considered. With regard to the simulation results, the electrified hydrometeor’ velocity vector is noteworthy to consider GMF effect on charge structure of thundercloud. Furthermore, the influence of GMF on charge separation could clarify the reason of some real thunderstorm observations. Finally, the effect of GMF on charge structure of thunderclouds might be a mechanism for electric field development and lightning initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aliev, A.K. and Tlatov, A.G., Growth in the atmospheric aerosol concentration as a climate forcing agent, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 8, pp. 1107–1112.

  2. Babich, L.P., Bochkov, E.I. and Kutsyk, I.M., Source of runaway electrons in a thundercloud field caused by cosmic radiation, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 5, pp. 671–675.

  3. Babich, L.P., Bochkov, E.I., Dwyer, J.R., and Kutsyk, I.M., Numerical simulations of local thundercloud field enhancements caused by runaway avalanches seeded by cosmic rays and their role in lightning initiation, J. Geophys. Res.: Space Phys., 2012, vol. 117, A09316.

    Article  Google Scholar 

  4. Barthe, C., Hoarau, T., Bovalo, C., Cloud electrification and lightning activity in a tropical cyclone-like vortex, Atmos. Res., 2016, 180, pp.297–309.

    Article  Google Scholar 

  5. Beloglazov, M.I. and Akhmetov, O.I., Global lightning formation at a minimum and maximum of solar activity according to the observations of the Schumann resonance on the Kola Peninsula, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 6, pp. 781–787.

  6. Bluestein, H.B., Synoptic–Dynamic Meteorology in Midlatitudes: Observations and Theory of Weather Systems, Taylor and Francis, 1992.

    Google Scholar 

  7. Füllekrug, M., The contribution of intense lightning discharges to the global atmospheric electric circuit during April 1998, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, nos. 13–14, pp. 1115–1119.

    Article  Google Scholar 

  8. Gurevich, A.V. and Zybin, K.P., Runaway breakdown and the mysteries of lightning, Phys. Today, 2005, vol. 58, pp. 37–43.

    Article  Google Scholar 

  9. Ivanov, K.G. and Kharshiladze, A.F., Dynamics of solar–terrestrial relations in summer 2012, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 537–548.

  10. King, J., Weather and the Earth’s magnetic field, Nature, 1974, vol. 247, pp. 131–134.

    Article  Google Scholar 

  11. King, J. and Willis, D., Magnetometeorology: Relationships between the weather and Earth’s magnetic field, in Possible Relationships Between Solar Activity and Meteorological Phenomena, Bandeen, W.R. and Maran, S.P., Eds., NASA, 1975, pp. 39–41.

    Google Scholar 

  12. Kleimenova, N.G., Kubicki, M., Odzimek, A., Malysheva, L.M., and Gromova, L.I., Effects of geomagnetic disturbances in daytime variations of the atmospheric electric field in polar regions, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 3, pp. 266–273.

  13. Knudsen, M.F. and Riisager, P., Is there a link between Earth’s magnetic field and low-latitude precipitation? Geology, 2009, vol. 37, pp. 71–74.

    Article  Google Scholar 

  14. Korotaev, S.M., Kiktenko, E.O., Gaidash, S.P., Budnev, N.M., Mirgazov, R.R., Panfilov, A.I., Khalezov, A.A., Serdyuk, V.O. and Shneer, V.S., Relationship between variations in the electric field’s vertical component in Lake Baikal and solar activity, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 6, pp. 769–773.

  15. Korotaev, S.M., Serdyuk, V.O. and Budnev, N.M., Correlation between long-term variations in the vertical component of the electric field in Baikal and solar activity, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 1, pp. 142–145.

  16. Krehbiel, P.R., The electrical structure of thunderstorms, in The Earth’s Electrical Environment, Washington, D.C.: National Academy Press, 1986, pp. 90–113.

    Google Scholar 

  17. Kuettner, J.P., Sartor, J.D., and Levin, Z., Thunderstorm electrification—inductive or non-inductive? J. Atmos. Sci., 1981, vol. 38, pp. 2470–2484.

    Article  Google Scholar 

  18. Li, Y., Zhang, G., Wang, Y., Wu, B., Li, J., Observation and analysis of electrical structure change and diversity in thunderstorms on the Qinghai-Tibet Plateau, Atmos. Res., 2017, vol. 194, pp. 130–141.

    Article  Google Scholar 

  19. Miller, K., Gadian, A., Saunders, C., Latham, J., and Christian, H., Modelling and observations of thundercloud electrification and lightning, Atmos. Res., 2001, vol. 58, no. 2, pp. 89–115.

    Article  Google Scholar 

  20. Mullayarov, V.A., Kozlov, V.I. and Karimov, R.R., Effect of variations in the solar-wind parameters on thunderstorm activity, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 8, pp. 1299–1301.

  21. Ogawa, T. and Brook, M., Charge distribution in thunderstorm clouds, Q. J. R. Meteorol. Soc., 1969, vol. 95, no. 405, pp. 513–525.

    Article  Google Scholar 

  22. Pineda, N., Rigo, T., Montanya, J., van der Velde, O. A., Charge structure analysis of a severe hailstorm with predominantly positive cloud-to-ground lightning, Atmos. Res., 2016, vol. 178, pp. 31–44.

    Article  Google Scholar 

  23. Pudovkin, M.I. and Veretenenko, S.V., Variations of the meridional profile of atmospheric pressure during a geomagnetic disturbance, Geomagn. Aeron., 1992, vol. 32, pp. 118–122.

    Google Scholar 

  24. Rakov, V. A. and Uman, M. A., Lightning: Physics and Effects, Cambridge: Cambridge University Press, 2003.

    Book  Google Scholar 

  25. Saunders, C.P.R., Thunderstorm electrification, Weather, 1988, vol. 43, no. 9, pp. 318–324.

    Article  Google Scholar 

  26. Saunders, C.P.R., Thunderstorm electrification laboratory experiments and charging mechanisms, J. Geophys. Res.: Atmos., 1994, vol. 99, no. D5, pp. 10773–10779.

    Article  Google Scholar 

  27. Saunders, C., Charge separation mechanisms in clouds, in Planetary Atmospheric Electricity, Leblanc, F., Aplin, K.L., Yair, Y., Eds., New York: Springer, 2008, pp. 335–353.

    Google Scholar 

  28. Schultz, D.M. and Vavrek, R.J., An overview of thundersnow, Weather, 2009, vol. 64, no. 10, pp. 274–277.

    Article  Google Scholar 

  29. Shumilov, O.I., Kasatkina, E.A. and Frank-Kamenetsky, A.V., Effects of extraordinary solar cosmic ray events on variations in the atmospheric electric field at high latitudes, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 5, pp. 650–657.

  30. Smirnov, I., The application of MRET technology for prevention of hurricanes generation driven by the geomagnetic extrastorms, Arctic, 2000.

  31. Smirnov, S.E., Mikhailova, G.A. and Kapustina, O.V., Variations in the quasi-static electric field in the near-Earth’s atmosphere during geomagnetic storms in November 2004, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 4, pp. 502–514.

  32. Soloviev, S.P., Rybnov, Y.S., Kharlamov, V.A. and Krasheninnikov, A.V., Acoustic gravity waves and the atmospheric electric field perturbations accompanying them, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 3, pp. 335–346.

  33. Stolzenburg, M., Rust, W.D., Smull, B.F., and Marshall, T.C., Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems, J. Geophys. Res.: Atmos., 1998, vol. 103, no. D12, pp. 14059–14078.

    Article  Google Scholar 

  34. Svensmark, H. and Friis-Christensen, E., Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, no. 11, pp. 1225–1232.

    Article  Google Scholar 

  35. Thébault, E., Finlay, C.C., Beggan, C.D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L. and Canet, E., International Geomagnetic Reference Field: The 12th generation, Earth, Planets Space, 2015, vol. 67, no. 1, id 79. http://www.ngdc. noaa.gov/IAGA/vmod/igrfhw.html.

  36. Veretenenko, S.V. and Tejll, P., Solar proton events and evolution of cyclones in the North Atlantic, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 4, pp. 518–528.

  37. Vonnegut, B., The atmospheric electricity paradigm, Bull. Am. Meteorol. Soc., 1994, vol. 75, pp. 53–61.

    Article  Google Scholar 

  38. Wilson, C.T.R., Investigations on lightning discharges and on the electric field of thunderstorms, Philos. Trans. R. Soc. London A, 1921, vol. 221, pp. 73–115.

    Article  Google Scholar 

Download references

Funding

This work was not supported.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Babak Sadeghi, Farahnaz Taghavi or Amir Abbas Shayegani Akmal.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, B., Taghavi, F. & Akmal, A. Latitudinal and Longitudinal Variations of Earth’s Magnetic Force on Electrified Hydrometeors. Geomagn. Aeron. 59, 770–781 (2019). https://doi.org/10.1134/S0016793219060033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219060033

Navigation