Skip to main content
Log in

Influence of Substorm Activity on the Formation of Ultra Low Frequency Noise Emissions in the Frequency Range of 0–7 Hz

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of the study of simultaneous observations of midlatitude ultra low frequency (ULF) noise emissions in the frequency range of 0–7 Hz and disturbances in the night sector of an auroral oval are presented. Data from observations of the magnetic field at the midlatitude Borok Observatory (L = 2.8) and 1-min data of the AL index are used for the analysis. It is shown that two kinds of ULF noise emission are observed simultaneously in the hertz range primarily in the summer season: one looks like a diffuse spot, and the other one is characterized by the occurrence of spectral resonance structures determined by the influence of the ionospheric Alfvén resonator. Diffuse spots are recorded mostly in the evening sector of the magnetosphere, and they precede the observation of spectral resonance structures, which are detected primarily at about midnight. Comparison of the observation intervals for diffuse spots with the dynamics of the AL index showed that diffuse spots form during substorm activity on the night side of the Earth in 80% of cases. It is established that the interval between the onset of substorm disturbances and the onset of the observation of diffuse spots is ∼60 min in most cases. It is assumed that the formation of diffuse spots is related to characteristics of the dynamics of protons injected from the magnetospheric tail in substorms and to the appearance of plasmaspheric plumes in the evening sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Belyaev, P.P., Polyakov, S.V., Rapoport. V.O., and Trakhtengerts, V.Yu., Detection of resonance structure in the atmospheric electromagnetic noise background spectrum in the range of short-period geomagnetic pulsations, Dokl. Akad. Nauk SSSR, 1987, vol. 297, pp. 840–843.

    Google Scholar 

  2. Belyaev, P.P., Bösinger, T., Isaev, S.V., and Kangas, J., First evidence at high latitudes for the ionospheric Alfvén resonator, J. Geophys. Res.: Space Phys., 1999, vol. 104, no. A3, pp. 4305–4317.

    Article  Google Scholar 

  3. Belyaev, P.P., Polyakov, S.V., Ermakova, E.N., and Isaev, S.V., Solar cycle variations in the ionospheric Alfvén resonator 1985–1995, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, pp. 239–248.

    Article  Google Scholar 

  4. Bösinger, T., Haldoupis, C., Belyaev, P.P., Yakunin, M.N., Semenova, N.V., Demekhov, A.G., and Angelopoulos, V., Spectral properties of the ionospheric Alfvén resonator observed at a low-latitude station (L = 1.3), J. Geophys. Res.: Space Phys, 2002, vol. 107, no. A10, pp. SIA 4-1–SIA 4-9.

  5. Dovbnya, B.V., Guglielmi, A.V., Potapov, A.S., and Rakhmatulin, R.A., An additional resonator for ultralow frequency waves, Geofiz. Issled., 2013, vol. 14, no. 2, pp. 49–58.

    Google Scholar 

  6. Dudkin, D., Pilipenko, V., Korepanov, V., Klimov, S., and Holzworth, R., Electric field signatures of the IAR and Schumann resonance in the upper ionosphere detected by Chibis-M microsatellite, J. Atmos. Sol.-Terr. Phys., 2014, vol. 117, pp. 81–87.

    Article  Google Scholar 

  7. Ejiri, M., Hoffman, R.A., and Smith, P.H., Energetic particle penetrations into the inner magnetosphere, J. Geophys. Res., 1980, vol. 85, no. A2, pp. 653–663.

    Article  Google Scholar 

  8. Fedorov, E., Mazur, N., Pilipenko, V., and Engebretson, M., Interaction of magnetospheric Alfvén waves with the ionosphere in the Pc1 frequency band, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 321–337. https://doi.org/10.1002/2015JA021020

    Article  Google Scholar 

  9. Gokhberg, M.B., A new type of electromagnetic emission in the range of short-period geomagnetic oscillations, Dokl. Earth Sci., 1998, vol. 359, no. 4, pp. 423–424.

    Google Scholar 

  10. Guglielmi, A.V. and Potapov, A.S., Influence of the interplanetary magnetic field on ULF oscillations of the ionospheric resonator, Cosmic Res., 2017, vol. 55, no. 4, pp. 248–252.

    Article  Google Scholar 

  11. Hsu, T.-S. and McPherron, R.L., Average characteristics of triggered and nontriggered substorms, J. Geophys. Res., 2004, vol. 109, A07208. https://doi.org/10.1029/2003JA009933

    Google Scholar 

  12. Hsu, T.-S. and McPherron, R.L., A statistical study of the relation of Pi2 and plasma flows in the tail, J. Geophys. Res., 2007, vol. 112, A05209. https://doi.org/10.1029/2006JA011782

    Google Scholar 

  13. McIlwain, C.E., Plasma convection in the vicinity of the geosynchronous orbit, in Earth’s Magnetospheric Processes. McCormac, B.M., Ed., Hingham, Mass.: D. Reidel, 1972, pp. 268–279.

    Google Scholar 

  14. Parent, A., Mann, I.R., and Rae, J., Effects of substorm dynamics on magnetic signatures of the ionospheric Alfvén resonator, J. Geophys. Res., 2010, vol. 115, no. A02312. https://doi.org/10.1029/2009JA014673

  15. Polyushkina, T.N., Dovbnya, B.V., Potapov, A.S., Tsegmed, B., and Rakhmatulin, R.A., Frequency structure of IAR and ionospheric parameters, Geofiz. Issled., 2015, vol. 16, no. 2, pp. 39–57.

    Google Scholar 

  16. Potapov, A.S., Dovbnya, B.V., Tsegmed, B., Earthquake impact on ionospheric Alfvén resonances, Izv., Phys. Solid Earth, 2008, vol. 44, no. 4, pp. 346–349.

    Article  Google Scholar 

  17. Semenova, N.V. and Yahnin, A.G., Sudden change in the resonance structure in the electromagnetic noise spectrum in the 0.1–10 Hz range during a substorm, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 3, pp. 316–322.

  18. Semenova, N.V., Yahnin, A.G., Vasil’ev, A.N., and Amm, O., Specific features of resonance structures in spectra of ULF electromagnetic noise at high latitudes (Barentsburg observatory), Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 1, pp. 36–44.

  19. Simões, F., Klenzing, J., Ivanov, S., et al., Detection of ionospheric Alfvén resonator signatures in the equatorial ionosphere, J. Geophys. Res., 2012, vol. 117, A11305. https://doi.org/10.1029/2012JA017709

    Article  Google Scholar 

  20. Spasojević, M., Goldstein, J., Carpenter, D.L., Inan, U.S., Sandel, B.R., Moldwin, M.B., and Reinisch, B.W., Global response of the plasmasphere to a geomagnetic disturbance, J. Geophys. Res., 2003, vol. 108, no. A9, 1340. https://doi.org/10.1029/2003JA009987

    Article  Google Scholar 

  21. Surkov, V. and Hayakawa, M., Ionospheric Alfvén Resonator (IAR), in Ultra and Extremely Low Frequency Electromagnetic Fields, Tokyo: Springer, 2014, pp. 145–207. https://doi.org/10.1007/978-4-431-54367-1_5

    Book  Google Scholar 

  22. Tanskanen, E.I., A comprehensive high-throughput analysis of substorms observed by image magnetometer network: years 1993–2003 examined, J. Geophys. Res., 2009, vol. 114, A05204. https://doi.org/10.1029/2008JA013682

    Article  Google Scholar 

  23. Yahnin, A.G., Semenova, N.V., Ostapenko, A.A., Kangas, J., Manninen, J., and Turunen, T., Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1–4 Hz at L = 5.2, Ann. Geophys., 2003, vol. 21, pp. 779–786.

    Article  Google Scholar 

  24. Yuan, Z., Xiong, Y., Qiao, Z., Li, H., Huang, S., Wang, D., Deng, X., Raita, T., and Wang, J., A subauroral polarization stream driven by field-aligned currents associated with precipitating energetic ions caused by EMIC waves: A case study, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 1696–1705. https://doi.org/10.1002/2015JA021804

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on the subject “Influence of Space Factors on the Development of Extreme Processes in the Earth’s Magnetosphere,” State assignment no. 0144-2014-00116.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. V. Dovbnya, B. I. Klain or N. A. Kurazhkovskaya.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dovbnya, B.V., Klain, B.I. & Kurazhkovskaya, N.A. Influence of Substorm Activity on the Formation of Ultra Low Frequency Noise Emissions in the Frequency Range of 0–7 Hz. Geomagn. Aeron. 59, 304–311 (2019). https://doi.org/10.1134/S0016793219030071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219030071

Navigation