Advertisement

Geomagnetism and Aeronomy

, Volume 59, Issue 2, pp 162–169 | Cite as

Dipolarization Flux Bundles

  • A. P. KropotkinEmail author
Article
  • 15 Downloads

Abstract

Localized fast plasma flows in the geomagnetic tail (bursty bulk flows, BBF, and dipolarizing flux bundles, DFB, having smaller spatial scale) which have been observed in recent years onboard CLUSTER and THEMIS spacecraft, are closely related to processes producing thin current sheets observed on the same satellites. This follows from our previous theoretical analysis and numerical simulation of processes leading to generation of thin current sheets. The theory also makes it possible to explain essential deviations in the behavior of DFB from predictions of the MHD simulation carried out in recent years by other authors. In the framework of the two-fluid model, such deviations can be understood taking into account the ion inertial drift current in a localized three-dimensional current system of DFB.

REFERENCES

  1. 1.
    Antonova, A.E., Gubar’, Yu.I., and Kropotkin, A.P., A model of spatio–temporal structure of the substorm electromagnetic disturbance and its consequences, Phys. Chem. Earth, 2000, vol. 25, nos. 1–2, pp. 43–46.Google Scholar
  2. 2.
    Baumjohann, W. and Roux, A., Le Contel, O., et al., Dynamics of thin current sheets: Cluster observations, Ann. Geophys., 2007, vol. 25, no. 6, pp. 1365–1389.CrossRefGoogle Scholar
  3. 3.
    Birn, J. and Hesse, M., The substorm current wedge in MHD simulations, J. Geophys. Res., 2013, vol. 118, pp. 3364–3376.  https://doi.org/10.1002/jgra.50187 CrossRefGoogle Scholar
  4. 4.
    Birn, J. and Hesse, M., The substorm current wedge: Further insights from MHD simulations, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 3503–3513.  https://doi.org/10.1002/2014JA019863 CrossRefGoogle Scholar
  5. 5.
    Birn, J. and Schindler, K., Thin current sheets in the magnetotail and the loss of equilibrium, J. Geophys. Res., 2002, vol. 107, no. A7, 1117.  https://doi.org/10.1029/2001JA000291 CrossRefGoogle Scholar
  6. 6.
    Birn, J., Schindler, K., and Hesse, M., Formation of thin current sheets in the magnetotail: Effects of propagating boundary deformations, J. Geophys. Res., 2003, vol. 108, no. A9, 1337.  https://doi.org/10.1029/2002JA009641 CrossRefGoogle Scholar
  7. 7.
    Birn, J., Raeder, J., Wang, Y.L., Wolf, R.A., and Hesse, M., On the propagation of bubbles in the geomagnetic tail, Ann. Geophys., 2004, vol. 22, pp. 1773–1786.CrossRefGoogle Scholar
  8. 8.
    Birn, J., Hesse, M., Schindler, K., and Zaharia, S., Role of entropy in magnetotail dynamics, J. Geophys. Res., 2009, vol. 114, A00D03.  https://doi.org/10.1029/2008JA014015 CrossRefGoogle Scholar
  9. 9.
    Birn, J., Nakamura, R., Panov, E.V., and Hesse, M., Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection, J. Geophys. Res., 2011, vol. 116, A01210.  https://doi.org/10.1029/2010JA016083 CrossRefGoogle Scholar
  10. 10.
    Domrin, V.I. and Kropotkin, A.P., Forced current sheet structure, formation and evolution: Application to magnetic reconnection in the magnetosphere, Ann. Geophys., 2004, vol. 22, pp. 2547–2553.  https://doi.org/10.5194/angeo-22-2547-2004 CrossRefGoogle Scholar
  11. 11.
    Domrin, V.I. and Kropotkin, A.P., Dynamics of equilibrium upset and electromagnetic energy transformation in the geomagnetotail: A theory and simulation using particles. 3. Versions of formation of thin current sheets, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 5, pp. 555–565.Google Scholar
  12. 12.
    Domrin, V.I., Malova, H.V., Artemyev, A.V., and Kropotkin, A.P., Peculiarities of the formation of a thin current sheet in the Earth’s magnetosphere, Cosmic Res., 2016, vol. 54, no. 6, pp. 423–437.CrossRefGoogle Scholar
  13. 13.
    Gabrielse, C., Angelopoulos, V., Harris, C., Artemyev, A., Kepko, L., and Runov, A., Extensive electron transport and energization via multiple, localized dipolarizing flux bundles, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 5059–5076.  https://doi.org/10.1002/2017JA023981 CrossRefGoogle Scholar
  14. 14.
    Hesse, M. and Birn, J., Magnetosphere–ionosphere coupling during plasmoid evolution: First results, J. Geophys. Res., 1991, vol. 96, no. A7, pp. 11513–11522.CrossRefGoogle Scholar
  15. 15.
    Kivelson, M.G. and Russell, C.T., Introduction to Space Physics, Cambridge: Cambridge Univ. Press, 1995.Google Scholar
  16. 16.
    Kropotkin, A.P., Magnetospheric substorm: Loss of the magnetoplasma equilibrium as a nonlinear dynamical bifurcation, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 2, pp. 135–141.Google Scholar
  17. 17.
    Kropotkin, A.P., Processes in current sheets responsible for fast energy conversion in the magnetospheric collisionless plasma, 2013. http://arxiv.org/abs/1302.2795.Google Scholar
  18. 18.
    Kropotkin, A.P. and Domrin, V.I., Theory of a thin one-dimensional current sheet in collisionless space plasma, J. Geophys. Res., 1996, vol. 101, pp. 19 893–19 902.CrossRefGoogle Scholar
  19. 19.
    Kropotkin, A.P. and Domrin, V.I., Kinetic thin current sheets: their formation in relation to magnetotail mesoscale turbulent dynamics, Ann. Geophys., 2009, vol. 27, no. 7, pp. 1353–1362.CrossRefGoogle Scholar
  20. 20.
    Kropotkin, A.P. and Domrin, V.I., Geomagnetotail dynamics: Different types of equilibriums and transitions between them, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 2, pp. 169–178.Google Scholar
  21. 21.
    Kropotkin, A.P., Malova, H.V., and Sitnov, M.I., The self-consistent structure of a thin anisotropic current sheet, J. Geophys. Res., 1997, vol. 102, pp. 22 099–22 106.CrossRefGoogle Scholar
  22. 22.
    Kropotkin, A.P., Trubachev, O.O., and Schindler, K., Nonlinear Mechanisms for the Substorm Explosion in the Geomagnetic Tail, Geomagn. Aeron. (Engl. Transl.), 2002a, vol. 42, no. 3, pp. 277–285.Google Scholar
  23. 23.
    Kropotkin, A.P., Trubachev, O.O., and Schindler, K., Substorm onset: Fast reconfiguration of the magnetotail caused by explosive growth of the turbulence level, Geomagn. Aeron. (Engl. Transl.), 2002b, vol. 42, no. 3, pp. 286–298.Google Scholar
  24. 24.
    Kuznetsova, M.M., Hesse, M., and Winske, D., Collisionless reconnection supported by nongyrotropic pressure effects in hybrid and particle simulations, J. Geophys. Res., 2001, vol. 106A, pp. 3799–3810.CrossRefGoogle Scholar
  25. 25.
    Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 8: Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Fizmatgiz, 1982, ch. 63.Google Scholar
  26. 26.
    Leonovich, A.S. and Kozlov, D., Coupled guided modes in the magnetotails: Spatial structure and ballooning instability, Astrophys. Space Sci., 2014, vol. 353, pp. 9–23.  https://doi.org/10.1007/s10509-014-1999-3 CrossRefGoogle Scholar
  27. 27.
    Leonovich, A.S. and Mazur, V.A., A theory of transverse small-scale standing Alfvén waves in an axially symmetric magnetosphere, Planet. Space Sci., 1993, vol. 41, no. 9, pp. 697–717.CrossRefGoogle Scholar
  28. 28.
    Leonovich, A.S. and Mazur, V.A., Lineinaya teoriya MGD-kolebanii magnitosfery (Linear Theory of MHD-Oscillations in the Magnetosphere), Moscow: Fizmatlit, 2016.Google Scholar
  29. 29.
    Lui, A.T.Y., Dipolarization fronts and magnetic flux transport, Geosci. Lett., 2015, vol. 2, p. 15.  https://doi.org/10.1186/s40562-015-0032-1 CrossRefGoogle Scholar
  30. 30.
    Liu, J., Angelopoulos, V., Runov, A., and Zhou, X.-Z., On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 2000–2020.  https://doi.org/10.1002/jgra.50092 CrossRefGoogle Scholar
  31. 31.
    Liu, J., Angelopoulos, V., Zhou, X.-Z., and Runov, A., Magnetic flux transport by dipolarizing flux bundles, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 909–926.  https://doi.org/10.1002/2013JA019395 CrossRefGoogle Scholar
  32. 32.
    Nakamura, R., Baumjohann, W., Runov, A., and Asano, Y., Thin current sheets in the magnetotail observed by Cluster, Space Sci. Rev., 2006, vol. 122, nos. 1–4, pp. 29–38.CrossRefGoogle Scholar
  33. 33.
    Runov, A., Sergeev, V.A., Nakamura, R., et al., Local structure of the magnetotail current sheet: 2001 Cluster observations, Ann. Geophys., 2006, vol. 24, pp. 247–262.CrossRefGoogle Scholar
  34. 34.
    Runov, A., Angelopoulos, V., Zhou, X.-Z., Zhang, X.J., Li, S., Plaschke, F., and Bonnell, J., A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet, J. Geophys. Res., 2011, vol. 116, A05216.  https://doi.org/10.1029/2010JA016316 CrossRefGoogle Scholar
  35. 35.
    Sergeev, V.A., Angelopoulos, V., Apatenkov, S., Bonnell, J., Ergun, R., Nakamura, R., McFadden, J.P., Larson, D., and Runov, A., Kinetic structure of the sharp injection/dipolarization front in the flow braking region, Geophys. Res. Lett., 2009, vol. 36, L21105.  https://doi.org/10.1029/2009GL040658 CrossRefGoogle Scholar
  36. 36.
    Sitnov, M.I., Zelenyi, L.M., Malova, H.V., and Sharma, A.S., Thin current sheet embedded within a thicker plasma sheet: Self-consistent theory, J. Geophys. Res., 2000, vol. 105, no. A6, pp. 13029–13043.CrossRefGoogle Scholar
  37. 37.
    Wiltberger, M., Merkin, V., Lyon, J.G., and Ohtani, S., High-resolution global magnetohydrodynamic simulation of bursty bulk flows, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 4555–4566.  https://doi.org/10.1002/2015JA021080 CrossRefGoogle Scholar
  38. 38.
    Zelenyi, L.M., Kropotkin, A.P., Domrin, V.I., Artemyev, A.V., Malova, H.V., and Popov, V.Yu., Tearing mode in thin current sheets of the Earth’s magnetosphere: A scenario of transition to unstable state, Cosmic Res., 2009, vol. 47, no. 5, pp. 352–360.CrossRefGoogle Scholar
  39. 39.
    Zhou, X.Z., Angelopoulos, V., Runov, A., et al., Thin current sheet in the substorm late growth phase: modeling of THEMIS observations, J. Geophys. Res.: Space Phys., 2009, vol. 114, A03223.  https://doi.org/10.1029/2008JA013777 Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations