Skip to main content
Log in

Effect of the Magnetopause and Bow Shock on Characteristics of Plasma Turbulence in the Earth’s Magnetosheath

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The magnetosheath is a natural laboratory for the study of plasma turbulence. The magnetopause and the bow shock prevent freely development of turbulence and modify turbulent cascade. In this paper, the effect of the magnetosheath boundaries on the forms of frequency spectra of ion flux fluctuations is analyzed based on statistics. In addition, variance in the spectrum characteristics are considered, such as spectral slope at the magnetohydrodynamic (MHD) and kinetic scales, as well as the frequency of transition between these scales when the satellite crosses the magnetosheath. The analysis is based on measurement of the ion flux by the Fast Solar Wind Monitor (BMSW) onboard the Spektr-R satellite with a time resolution of 31 ms. It is shown that the probability of observing spectra of the particular type greatly varies upon crossing of the magnetosheath: standard spectra with two slopes and a distinct breakpoint are observed in most cases in all parts of the magnetosheath, and the probability of their observation is slightly higher upon the approach to the magnetopause; spectra with a peak in the region of transition between the scales (MHD and kinetic) are more often observed closer to the bow shock, and spectra with a plateau in the region of transition between the scales are usually observed closer to the magnetopause. It is revealed that the spectra at the MHD scales immediately behind the bow shock are described by a power function with index –1.3 on average, which noticeably differs from the index of –5/3 predicted by the classical theories. The spectra at the kinetic scales immediately behind the shock wave become steeper than in the solar wind and slightly flatten on the approach to the magnetopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alexandrova, O., Mangeney, A., Maksimovic, M., Cornilleau-Wehrlin, N., Bosqued, J.-M., and André, M., Alfvén vortex filaments observed in magnetosheath downstream of a quasiperpendicular bow shock, J. Geophys. Res., 2006, vol. 111, A12208. doi 10.1029/2006JA011934

    Article  Google Scholar 

  2. Alexandrova, O., Lacombe, C., and Mangeney, A., Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations, Ann. Geophys., 2008, vol. 26, no. 11, pp. 3585–3596. doi 10.5194/angeo-26-3585-2008

    Article  Google Scholar 

  3. Alexandrova, O., Chen, C.H.K., Sorriso-Valvo, L., Horbury, T.S., and Bale, S.D., Solar wind turbulence and the role of ion instabilities, Space Sci. Rev., 2013, vol. 178, pp. 101–139.

    Article  Google Scholar 

  4. Bieber, J.W. and Stone, E.C., Energetic electron bursts in the magnetopause electron layer and in interplanetary space, in Proc. Magnetospheric Boundary Layers Conference, Alpbach, USA, 1979, ESA SP-148, pp. 131–135.

  5. Breuillard, H., Yordanova, Y., Vaivads, A., and Alexandrova, O., The effects of kinetic instabilities on small-scale turbulence in Earth’s magnetosheath, Astrophys. J., 2016, vol. 829, no. 1, id 54. doi 10.3847/0004-637X/829/1/54

  6. Bruno, R. and Carbone, V., The solar wind as a turbulence laboratory, Living Rev. Sol. Phys., 2013, vol. 10, doi 10.12942/lrsp-2013-2

  7. Chandran, B.D.G., Quataert, E., Howes, G.G., Xia, Q., and Pongkitiwanichakul, P., Constraining low-frequency Alfvénic turbulence in the solar wind using density-fluctuation measurements, Astrophys. J., 2009, vol. 707, pp. 1668–1675. doi 10.1088/0004-637X/707/2/1668

    Article  Google Scholar 

  8. Chen, C.H.K., Boldyrev, S., Xia, Q., and Perez, J.C., Nature of subproton scale turbulence in the solar wind, Phys. Rev. Lett., 2013, vol. 110, no. 22, 225002. doi 10.1103/PhysRevLett.110.225002

    Article  Google Scholar 

  9. Chen, C.H.K., Leung, L., Boldyrev, S., Maruca, B.A., and Bale, S.D., Ion-scale spectral break of solar wind turbulence at high and low beta, Geophys. Res. Lett., 2014, vol. 41, no. 22, pp. 8081–8088. doi 10.1002/2014GL062009

    Article  Google Scholar 

  10. Czaykowska, A., Bauer, T.M., Treumann, R.A., and Baumjohann, W., Magnetic field fluctuations across the earth’s bow shock, Ann. Geophys., 2001, vol. 19, pp. 275–287.

    Article  Google Scholar 

  11. Frisch, U., Turbulence, Cambridge: Cambridge University Press, 1995.

    Book  Google Scholar 

  12. Gagua, I.T., Gagua, T.I., and Zastenker, GN., Determination of a solar wind ion flux value and direction using a set of integral Faraday cups for the fast monitor of solar wind, in WDC'09 Proc. of Contributed Papers, Part II: Physics of Plasmas and Ionized Media, Prague, Czech Republic, 2009, pp. 22–29.

  13. Galtier, S., Wave turbulence in incompressible hall magnetohydrodynamics, J. Plasma Phys., 2006, vol. 72, no. 5, pp. 721–769. doi 10.1017/S0022377806004521

    Article  Google Scholar 

  14. Greenstadt, E.W., Observation of nonuniform structure of the Earth’s bow shock correlated with interplanetary field orientation, J. Geophys. Res., 1972, vol. 77, no. 10, 1029. doi 10.1029/JA077i010p01729

    Google Scholar 

  15. Gutynska, O., Šafránková, J., and Němeček, Z., Correlation properties of magnetosheath magnetic field fluctuations, J. Geophys. Res., 2009, vol. 114, no. A8, A08207. doi 10.1029/2009JA014173

    Article  Google Scholar 

  16. Howes, G.G., Bale, S.D., Klein, K.G., Chen, C.H.K., Salem, C.S., and Tenbarge, J.M., The slow-mode nature of compressible wave power in solar wind turbulence, Astrophys. J. Lett., 20112, vol. 753, no. 1, L19. doi 10.1088/2041-8205/753/1/L19

  17. Huang, S.Y., Hadid, L.Z., Sahraoui, F., Yuan, Z.G., and Deng, X.H., On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence, Astrophys. J. Lett., 2017, vol. 836, no. 1, L10. doi 10.3847/2041-8213/836/1/L10

    Article  Google Scholar 

  18. Kolmogorov, A.N., The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, no. 4, pp. 299–303.

    Google Scholar 

  19. Kozak, L.V., Pilipenko, V.A., Chugunova, O.M., and Kozak, P.N., Statistical analysis of turbulence in the foreshock region and in the Earth’s magnetosheath, Cosmic Res., 2011, vol. 49, no. 3, pp. 194–204.

    Article  Google Scholar 

  20. Lacombe, C. and Belmont, G., Waves in the Earth’s magnetosheath: Observations and interpretations, Adv. Space Res., 1995, vol. 15, nos. 8–9, pp. 329–340. doi 10.1016/0273-1177(94)00113-F

    Article  Google Scholar 

  21. Nikolaeva, N.S., Zastenker, G.N., Šafránková, J., Němeček, Z., Nozdrachev, M.N., Romanov, S.A., Yermolaev, Yu.I., and Eismont, N.A., On sources and amplitude of magnetopause motion, Cosmic Res., 1998, vol. 36, no. 6, pp. 537–548.

    Google Scholar 

  22. Pitña, A., Šafránková, J., Němeček, Z., Goncharov, O., Nĕmec, F., Přech, L., Chen, C.H.K., and Zastenker, G.N., Density fluctuations upstream and downstream of interplanetary shocks, Astrophys. J., 2016, vol. 819, id 41. doi 10.3847/0004-637X/819/1/41

  23. Rakhmanova, L., Riazantseva, M., and Zastenker, G., Plasma fluctuations at the flanks of the Earth’s magnetosheath at ion kinetic scales, Ann. Geophys., 2016, vol. 34, pp. 1011–1018.

    Article  Google Scholar 

  24. Rakhmanova, L., Riazantseva, M., Zastenker, G., and Yermolaev, Yu., High-frequency plasma fluctuations in the middle magnetosheath and near its boundaries: Spektr-R observations, J. Plasma Phys., 2017, vol. 83, 705830204. doi 10.1017/S002237781700023X

    Article  Google Scholar 

  25. Rezeau, L., Belmont, G., Cornilleau-Wehrlin, N., and Reberac, F., Spectral law and polarization properties of the low frequency waves at the magnetopause, Geophys. Res. Lett., 1999, vol. 26, no. 6, pp. 651–654. doi 10.1029/1999GL900060

    Article  Google Scholar 

  26. Riazantseva, M.O., Budaev, V.P., Zelenyi, L.M., Zastenker, G.N., Pavlos, G.P., Šafránková, J., Němeček, Z., Přech, L., and Nĕmec, F., Dynamic properties of small scale solar wind plasma fluctuations, Philos. Trans. R. Soc. A, 2015, vol. 373, 20140146. doi 10.1098/rsta.2014.0146

    Article  Google Scholar 

  27. Riazantseva, M.O., Budaev, V.P., Rakhmanova, L.S., Zastenker, G.N., Šafránková, J., Němeček, Z., and Přech, L., Comparison of properties of small scale ion flux fluctuations in flank magnetosheath and in solar wind, Adv. Space Res., 2016, vol. 58, no. 2, pp. 166–174.

    Article  Google Scholar 

  28. Riazantseva, M.O., Budaev, V.P., Rakhmanova, L.S., Zastenker, G.N., Šafránková, J., Němeček, Z., and Přech, L., Variety of shapes of solar wind ion flux spectra: Spektr-R measurements, J. Plasma Phys., 2017, vol. 83, no. 4, 705830401. doi 10.1017/S0022377817000502

    Article  Google Scholar 

  29. Riazantseva, M.O., Rakhmanova, L.S., Zastenker, G.N., and Yermolaev, Yu.I., T Types of spectra of ion flux fluctuations in the solar wind and magnetosheath at the interface between inertial and dissipative ranges, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 1, pp. 1–7.

  30. Šafránková, J., Němeček, Z., Přech, L., et al., Fast solar wind monitor (BMSW): Description and first results, Space Sci. Rev., 2013, vol. 175, pp. 165–182.

    Article  Google Scholar 

  31. Šafránková, J., Němeček, Z., Nĕmec, F., Přech, L., Pitña, A., Chen, C.H.K., and Zastenker, G., Solar wind density spectra around the ion spectral break, Astrophys. J., 2015, vol. 803, id 107. doi 10.1088/0004-637X/803/2/107

  32. Šafránková, J., Němeček, Z., Nĕmec, F., Přech, L., Chen, C.H.K., and Zastenker, G., Power spectral density of fluctuations of bulk and thermal speeds in the solar wind, Astrophys. J., 2016, vol. 825, id 121. doi 10.3847/0004-637X/825/2/121

  33. Sahraoui, F., Belmont, G., Rezeau, L., and Cornilleau-Wehrlin, N. Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the Cluster spacecraft, Phys. Rev. Lett., 2006, vol. 96, no. 7, 075002. doi 10.1103/PhysRevLett.96.075002

    Article  Google Scholar 

  34. Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E., and Tatsuno, T., Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys. J., Suppl. Ser., 2009, vol. 182, pp. 310–377.

    Article  Google Scholar 

  35. Schwartz, S.J., Burgess, D., and Moses, J.J., Low-frequency waves in the Earth’s magnetosheath: present status, Ann. Geophys., 1996, vol. 14, pp. 1134–1150.

    Google Scholar 

  36. Shevyrev, N. and Zastenker, G., Some features of plasma flow in the magnetosheath behind the quasi-parallel and quasi-perpendicular bow shocks, Planet. Space Sci., 2005, vol. 53, pp. 95–102.

    Article  Google Scholar 

  37. Shevyrev, N., Zastenker, G.N., Nozdrachev, M.N., Němeček, Z., Šafránková, J., and Richardson, J.D., High and low frequency large amplitude variations of plasma and magnetic field in the magnetosheath: Radial profile and some features, Adv. Space Res., 2003, vol. 31, no. 5, pp. 1389–1394.

    Article  Google Scholar 

  38. Shue, J.-H., Chao, J.K., Fu, H.C., Khurana, K.K., Russell, C.T., Singer, H.J., and Song, P., Magnetopause location under extreme solar wind conditions, J. Geophys. Res., vol. 103, no. A8, pp. 17691–17700. doi 10.1029/98JA01103

  39. Spreiter, J.R., Summers, A.L., and Alksne, A.Y., Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 1966, vol. 14, pp. 223–253.

    Article  Google Scholar 

  40. Tu, C.-Y. and Marsch, E., MHD structures, waves and turbulence in the solar wind: Observations and theories, Space Sci. Rev., 1995, vol. 73, nos. 1–2, pp. 1–210. doi 10.1007/BF00748891

    Article  Google Scholar 

  41. Verigin, M.I., Kotova, G.A., Slavin, J., Szabo, A., Kessel, M., Šafránková, J., Němeček, Z., Gombosi, T.I., Kabin, K., Shugaev, F., and Kalinchenko, A., Analysis of the 3-D shape of the terrestrial bow shock by Interball/Magion 4 observations, Adv. Space Res., 2001, vol. 28, no. 6, pp. 857–862.

    Article  Google Scholar 

  42. Verigin, M.I., Tátrallyay, M., Erdős, G., and Kotova, G.A., Magnetosheath interplanetary medium reference frame: application for a statistical study of mirror type waves in the terrestrial plasma environment, Adv. Space Res., 2006, vol. 37, no. 3, pp. 515–521. doi 10.1016/j.asr.2005.03.042

    Article  Google Scholar 

  43. Zastenker, G.N., Šafránková, J., Němeček, Z., et al., Fast measurements of parameters of the solar wind using the BMSW instrument, Cosmic Res., 2013, vol. 51, no. 2, pp. 78–89.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to their colleagues from the Space Research Institute of the Russian Academy of Sciences, Lavochkin Research and Production Association, and Charles University in Prague, Czech Republic, for their assistance in the development, adjustment, calibration, flight monitoring, and collecting, transmission and preprocessing of the scientific information from the BMSW device.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. S. Rakhmanova or M. O. Riazantseva.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhmanova, L.S., Riazantseva, M.O., Zastenker, G.N. et al. Effect of the Magnetopause and Bow Shock on Characteristics of Plasma Turbulence in the Earth’s Magnetosheath. Geomagn. Aeron. 58, 718–727 (2018). https://doi.org/10.1134/S0016793218060129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218060129

Navigation