Skip to main content
Log in

Effect of the Madden–Julian Oscillation and Quasi-Biennial Oscillation on the Dynamics of Extratropical Stratosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The effects of the Madden–Julian oscillation and quasi-biennial oscillation in the equatorial stratosphere on the dynamic processes in the extratropical stratosphere has been studied with the use of a model of the middle and upper atmospheric circulation. The heat source of the Madden–Julian oscillation in tropics is specified as a longitude-modulated wave perturbation with a zonal wavenumber of m = 2 and a period of about Т = 45 days that propagates eastward with a phase speed of ~5 m/s. Ensemble calculations were carried out independently for the westerly and easterly phases of the quasi-biennial oscillation. Analysis of the results has shown that both phenomena strongly affect the circulation of the winter extratropical stratosphere, the polar vortex decay, and sudden stratospheric warming events; the character of the effect depends on the combination of their phases. The good agreement between the simulation results and the reanalysis of data confirms our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bao, M. and Hartmann, D.L., The response to MJO-like forcing in a linear shallow-water model, Geophys. Res. Lett., 2014. vol. 41, pp. 1322–1328. https://doi.org/10.1002/2013GL057683

    Article  Google Scholar 

  2. Butler, A.H. and Gerber, E.P., Optimizing the definition of a sudden stratospheric warming, J. Clim., 2011, vol. 31, no. 6, pp. 2337–2344. https://doi.org/10.1175/CLI-D-17-0648.1

    Article  Google Scholar 

  3. Butler, A.H. and Polvani, L.M., El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record, Geophys. Res. Lett., 2011, vol. 38, L13807. https://doi.org/10.1029/2011GL048084

    Article  Google Scholar 

  4. Butler, A.H., Sjoberg, J.P., Seidel, D.J., and Rosenlof, K.H., A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 2017, vol. 9, pp. 63–76. https://doi.org/10.5194/essd-9-63-2017

    Article  Google Scholar 

  5. Chandran, A., Collins, R.L., and Harvey, V.L., Stratosphere–mesosphere coupling during stratospheric sudden warming events, Adv. Space Res., 2014, vol. 53, pp. 1265–1289.

    Article  Google Scholar 

  6. Chiodo, G. and Polvani, L.M., Reduced southern hemispheric circulation response to quadrupled CO2 due to stratospheric ozone feedback, Geophys. Res. Lett., 2017, vol. 44, no. 1, pp. 465–474.

    Article  Google Scholar 

  7. Ermakova, T.S., Statnaya, I.A., Fedulina, I.N., Suvorova, E.V., and Pogoreltsev, A.I., Three-dimensional semi-empirical climate model of water vapor distribution and its implementation to the radiation module of the middle and upper atmosphere model, Russ. Meteorol. Hydrol., vol. 42, no. 9, pp. 594–600.

  8. Gabis, I.P. and Troshichev, O.A., The quasi-biennial oscillation in the equatorial stratosphere: Seasonal regularity in zonal wind changes, discrete QBO-cycle period and prediction of QBO-cycle duration, Geomagn. Aeron. (Engl. Transl.), vol. 51, no. 4, pp. 501–512.

  9. Garfinkel, C.I., Benedict, J.J., and Maloney, E.D., Impact of the MJO on the boreal winter extratropical circulation, Geophys. Res. Lett., 2014, vol. 41. https://doi.org/10.1002/2014GL061094

  10. Garfinkel, C.I. and Schwartz, C., MJO-related tropical convection anomalies lead to more accurate stratospheric vortex variability in subseasonal forecast models, Geophys. Res. Lett., 2017, vol. 44, pp. 10054–10062. https://doi.org/10.1002/2017GL074470

    Article  Google Scholar 

  11. Gavrilov, N.M. and Koval, A.V., Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 3, pp. 244–251.

    Article  Google Scholar 

  12. Gavrilov, N.M., Koval, A.V., Pogoreltsev, A.I., and Savenkova, E.N., Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios, Adv. Space Res., 2018, vol. 61, no. 7, pp. 1819–1836. https://doi.org/10.1016/j.asr.2017.08.022

    Article  Google Scholar 

  13. Gerber, E.P. and Polvani, L.M., Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability, J. Clim., 2009, vol. 22, pp. 1920–1933. https://doi.org/10.1175/2008JCLI2548.1

    Article  Google Scholar 

  14. Gerber, E.P., Butler, A., Calvo, N., et al., Assessing and understanding the impact of stratospheric dynamics and variability on the earth system, Bull. Am. Meteorol. Soc., 2012, vol. 93, pp. 845–859. https://doi.org/10.1175/BAMS-D-11-00145

    Article  Google Scholar 

  15. Grise, K.M. and Polvani, L.M., Understanding the time scales of the tropospheric circulation response to abrupt CO2 forcing in the Southern Hemisphere: Seasonality and the role of the stratosphere, J. Clim., 2017, vol. 30, no. 21, pp. 8497–8515.

    Article  Google Scholar 

  16. Ivy, D.J., Hilgenbrink, C., Kinnison, D., et al., Observed changes in the Southern Hemispheric circulation in May, J. Clim., 2017, vol. 30, no. 2, pp. 527–536.

    Article  Google Scholar 

  17. Kandieva, K.K., Pogoreltsev, A.I., and Aniskina, O.G., Model source of the Madden–Julian Oscillation generation, RSHU Proceedings Journal, 2017, no. 47, pp. 91–105.

  18. Kandieva, K.K., Anikina, O.G., and Pogoreltsev, A.I., Effect of the Madden–Julian Oscillation generation on the intensity and structure of the polar vortex, RSHU Proceedings Journal, 2018, no. 50, pp. 18–27.

  19. Kobayashi, S., Harada, Y., Ota, Y., et al., The JRA-55 reanalysis: General specifications and basic characteristics, J. Meteorol. Soc. Jpn., 2015, vol. 93, no. 1, pp. 5–48. doi https://doi.org/10.2151/jmsj.2015-001

    Article  Google Scholar 

  20. Kochetkova, O.S., Mordvinov, V.I., and Rudneva, M.A., Analysis of the factors affecting the occurrence of stratospheric warming, Opt. Atmos. Okeana, 2014, vol. 27, no. 8, pp. 719–727.

    Google Scholar 

  21. Liu, H.-L. and Roble, R.G., A study of a self-generated stratospheric sudden warming and its mesospheric–lower thermospheric impacts using the coupled TIME-GCM/CCM3, J. Geophys. Res., 2002, vol. 107, no. D23, 4695. https://doi.org/10.1029/2001JD001533

    Google Scholar 

  22. Madden, R.A. and Julian, P.R., Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific, J. Atmos. Sci., 1971, vol. 28, pp. 702–708.

    Article  Google Scholar 

  23. Madden, R.A. and Julian, P.R., Description of global-scale circulation cells in the tropics with a 40–50 day period, J. Atmos. Sci., 1972, vol. 29, pp. 1109–1123.

    Article  Google Scholar 

  24. Matsuno, T., A dynamical model of the stratosphere sudden warming, J. Atmos. Sci., 1971, vol. 28, pp. 1479–1494. https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2

    Article  Google Scholar 

  25. Mordvinov, V.I., Ivanova, A.S., and Devyatova, E.V., Generation of Arctic and Antarctic oscillations by torsional vibrations, Solnechno-Zemnaya Fiz., 2009, no. 13, pp. 55–65.

  26. Mordvinov, V.I., Devyatova, E.V., Kochetkova, O.S., and Pogoreltsev, A.I., Simulation of stratospheric low-frequency disturbances, RSHU Proceedings Journal, 2011, no. 21, pp. 47–52.

  27. Mordvinov, V.I., Devyatova, E.V., Kochetkova, O.S., and Oznobikhina, O.A., Investigation of conditions for the generation and propagation of low-frequency disturbances in the troposphere, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 1, pp. 55–65.

    Article  Google Scholar 

  28. Palmeiro, F.M., Barriopedro, D., Herrera, R., and Calvo, N., Comparing sudden stratospheric warming definitions in reanalysis data, J. Clim., 2015, vol. 28, pp. 6823–6840. https://doi.org/10.1175/JCLI-D15-0004.1

    Article  Google Scholar 

  29. Palmén, E. and Newton, C., Atmospheric Circulation Systems, New York: Academic, 1969; Leningrad: Gidrometeoizdat, 1973.

  30. Plumb, R.A., On the three-dimensional propagation of stationary waves, J. Atmos. Sci., 1985, vol. 42, no. 3, pp. 217–229.

    Article  Google Scholar 

  31. Pogoreltsev, A.I., Generation of normal atmospheric modes by stratospheric vacillations, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 4, pp. 423–435.

    Article  Google Scholar 

  32. Pogoreltsev, A.I., Vlasov, A.A., Fröhlich, K., and Jacobi, Ch., Planetary waves in coupling the lower and upper atmosphere, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 2083–2101. https://doi.org/10.1016/j.jastp.2007.05.014

    Article  Google Scholar 

  33. Pogoreltsev, A.I., Savenkova, E.N., and Pertsev, N.N., Sudden Stratospheric warmings: The role of normal atmospheric modes, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 3, pp. 357–372.

  34. Pogoreltsev, A.I., Savenkova, E.N., Aniskina, O.G., Ermakova, T.S., Chen, W., and Wei, K., Interannual and intraseasonal variability of stratospheric dynamics and stratosphere–troposphere coupling during northern winter, J. Atmos. Sol.-Terr. Phys., 2015, vol. 136, pp. 187–200.

    Article  Google Scholar 

  35. Ray, P. and Zhang, C., A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian Oscillation, J. Atmos. Sci., 2010, vol. 67, pp. 515–528.

    Article  Google Scholar 

  36. Rienecker, M.M., Suarez, M.J., Gelaro, R., et al., MERRA: NASA’s modern-era retrospective analysis for research and applications, J. Clim., 2011, vol. 14, pp. 3624–3648. https://doi.org/10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  37. Sheshadri, A., Plumb, R.A., and Gerber, E., Seasonal variability of the polar stratospheric vortex in an idealized AGCM with varying tropospheric wave forcing, J. Atmos. Sci., 2015, vol. 72, pp. 2248–2266. https://doi.org/10.1175/JAS-D-14-0191.1

    Article  Google Scholar 

  38. Smith, A.K., Observation of wave–wave interaction in the stratosphere, J. Atmos. Sci., 1983, vol. 40, pp. 2484–2496.

    Article  Google Scholar 

  39. Suvorova, E.N., Drobashevskaya, E.A., and Pogoreltsev, A.I., Clime model of three-dimensional ozone distributions according to MERRA reanalysis data, Uch. Zap. Ross. Gos. Gidrometeorol. Univ., 2017, no. 49, pp. 38–46.

  40. Taguchi, M. and Hartmann, D.L., Increased occurrence of stratospheric sudden warmings during El Niño simulated by WACCM, J. Clim., 2006, vol. 19, pp. 324–332. https://doi.org/10.1175/JCLI3655.1

    Article  Google Scholar 

  41. Vargin, P.A. and Volodin, E.M., Analysis of the reproduction of dynamic processes in the stratosphere using the climate model of the Institute of Numerical Mathematics, Russian Academy of Sciences, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 1–15.

    Article  Google Scholar 

  42. Weickmann, K.M., Lussky, G.R., and Kutzbach, J.E., Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb stream function during northern winter, Mon. Weather Rev., 1985, vol. 113, pp. 941–961.

    Article  Google Scholar 

  43. Welch, D.I., The generalization of “Student’s” problem when several different population variances are involved, Biometrika, 1947, vol. 34, no. 1, pp. 28–35.

    Google Scholar 

  44. Wheeler, M.C. and Hendon, H.H., An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction, Mon. Weather Rev., 2004, vol. 132, pp. 1917–1932.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The adjustment of the MUAM model, the ensemble calculations of the middle atmosphere circulation, and the analysis of the MERRA and JRA55 data were carried out with the financial support of the Russian Foundation for Basic Research (project no. 18-05-01050); processing and interpretation of the results was carried out within Program of Fundamental Scientific Research of State Academies for 2013–2020 no. II.16.1.2 FNI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Kandieva.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandieva, K.K., Aniskina, O.G., Pogoreltsev, A.I. et al. Effect of the Madden–Julian Oscillation and Quasi-Biennial Oscillation on the Dynamics of Extratropical Stratosphere. Geomagn. Aeron. 59, 105–114 (2019). https://doi.org/10.1134/S0016793218060063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218060063

Navigation