Skip to main content
Log in

Spatial-Energy Characteristics of Cosmic Rays and Parameters of Magnetospheric Current Systems in March and June 2015

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The data from terrestrial observations of cosmic rays at the global network of stations by the method of spectrographic global survey were used to analyze two Forbush decreases during the geomagnetic storms in March and June 2015. The spectra of cosmic ray variations, pitch angle anisotropy of cosmic rays at different phases of Forbush decrease development, and the changes in the planetary system of geomagnetic cutoff rigidities are presented. It is shown that, during the approximation of the spectra of variations by the power function of particle rigidity in the interval of 10–50 GV, the spectrum index is softer at the maximum modulation phase than during the phases of cosmic ray intensity decline and recovery. In the axisymmetric model of the bounded magnetosphere of the Earth, which takes into account the currents at the magnetopause and the ring current, the distance to the subsolar point and the radius of the ring current, as well as the contribution of the ring current to the changes in geomagnetic cutoff rigidity and to the Dst index during the studied events, are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexeev, I.I., Belenkaya, E.S., Kalegaev, V.V., Feldstein, Y.I., and Grafe, A., Magnetic storms and magnetotail currents, J. Geophys. Res., 1996, vol. 101, pp. 7737–7747.

    Article  Google Scholar 

  • Alexeev, I.I., Kalegaev, V.V., Belenkaya, E.S., Bobrovnikov, S.Yu., Feldstein, Ya.I., and Gromova, L.I., The model description of magnetospheric magnetic field in the course of magnetic storm on January 9–12, 1997, J. Geophys. Res., 2001, vol. 106, pp. 25683–25694.

    Article  Google Scholar 

  • Archive of Solar Terrestrial Activity Reports, 2017. https://doi.org/www.solen.info/solar/old_reports.

  • Belov, A.V., Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena, in Proc. IAU Symp., 2009, vol. 257, pp. 439–450.

    Google Scholar 

  • Cane, H.V., Richardson, I.G., and von Rosenvinge, T.T., Cosmic ray decreases: 1964–1994, J. Geophys. Res., 1996, vol. 101, no. A10, pp. 21561–21572.

    Article  Google Scholar 

  • Dorman, L.I., Cosmic Rays: Variations and Space Explorations, Amsterdam: North-Holland, 1974.

    Google Scholar 

  • Dvornikov, V.M., Sdobnov, V.E., and Sergeev, A.V., Informativity of the spectrographic global survey method, Preprint of Siberian Institute of Terrestrial Magnetism, the Ionosphere, and Radiowave Propagation, Irkutsk, 1984, no. 25–84.

  • Dvornikov, V.M., Sdobnov, V.E., and Sergeev, A.V., The spectrographic global survey method for analyzing the variations in the intensity of cosmic rays of interplanetary and magnetospheric origin, in Variatsii kosmicheskikh luchei i issledovaniya kosmosa (Cosmic Ray Variations and Space Research), Moscow: IZMIRAN, 1986, pp. 232–237.

    Google Scholar 

  • Dvornikov, V.M., Kravtsova, M.V., and Sdobnov, V.E., Coronal mass ejections and cosmic ray effects, Izv. Akad. Nauk, Ser. Fiz., 2006, vol. 70, no. 10, pp. 1504–1507.

    Google Scholar 

  • Dvornikov, V.M., Kravtsova, M.V., and Sdobnov, V.E., Diagnostics of the electromagnetic characteristics of the interplanetary medium based on cosmic ray effects, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 4, pp. 430–440.

    Article  Google Scholar 

  • Feldstein, Y.I., Levitin, A.E., Kozyra, J., et al., Self-consistent modeling of the large-scale distortions in the geomagnetic field during the 24–27 September 1998 major magnetic storm, J. Geophys. Res., 2005, vol. 110, no. A11. doi 10.1029/2004JA010584

    Article  Google Scholar 

  • Forbush, S.E., On the effects in the cosmic-ray intensity observed during the recent magnetic storm, Phys. Rev., 1937, vol. 51, pp. 1108–1109.

    Article  Google Scholar 

  • Ganushkina, N.Yu., Pulkkinen, T.I., Kubyshkina, M.V., Singer, H.J., and Russell, C.T., Long-term evolution of magnetospheric current systems during storms, Ann. Geophys., 2004, vol. 22, no. 4, pp. 1317–1334.

    Article  Google Scholar 

  • Gopalswamy, N., Corona mass ejections: A summary of recent results, in Proc. 20th National Solar Physics Meeting, Papradno, Slovakia, 2010, pp. 108–130.

    Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P., and Michalek, G., The mild space weather in solar cycle, in Proc. 14th International Ionospheric Symposium on “Bridging the Gap Between Applications and Research Involving Ionospheric and Space Weather Disciplines”, Alexandria, VA, 2015. https://doi.org/arxiv.org/pdf/1508.01603.

    Google Scholar 

  • Gosling, J.T., The solar flare myth, J. Geophys. Res., 1993, vol. 98, no. A11, pp. 18937–18949.

    Article  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Chertok, I.M., Belov, A.V., Filippov, B.P., Slemzin, V.A., and Jackson, B.V., A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. IV. Unusual magnetic cloud and overall scenario, Sol. Phys., 2014, vol. 289, no. 12, pp. 4653–4673.

    Article  Google Scholar 

  • Greenspan, M.E. and Hamilton, D.C., A test of the Dessler–Parker–Sckopke relation during magnetic storms, J. Geophys. Res., 2000, vol. 105, pp. 5419–5430.

    Article  Google Scholar 

  • Kalegaev, V.V., Ganushkina, N.Y., Pulkkinen, T.I., Kubyshkina, M.V., Singer, H.J., and Russell, C.T., Relation between the ring current and the tail current during magnetic storms, Ann. Geophys., 2005, vol. 23, no. 2, pp. 523–533.

    Article  Google Scholar 

  • Kamide, Y. and Kusano, K., No major solar flares but the largest geomagnetic storm in the present solar cycle, Space Weather, 2015, vol. 13, no. 6, pp. 365–367. doi 10.1002/2015SW001213

    Article  Google Scholar 

  • Kataoka, R., Shiota, D., Keika, E., and Kilpua, K., Pileup accident hypothesis of magnetic storm on 17 March 2015, Geophys. Res. Lett., 2015, vol. 42, pp. 5155–5161. doi 10.1002/2015GL064816

    Article  Google Scholar 

  • Kichigin, G.N. and Sdobnov, V.E., Geomagnetic cutoff rigidities of cosmic rays in a model of the bounded magnetosphere with the ring current, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 2, pp. 132–136.

    Article  Google Scholar 

  • Klyueva, A.I., Belov, A.V., and Eroshenko, E.A., Specific features of the rigidity spectrum of Forbush effects, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 2, pp. 177–189.

    Article  Google Scholar 

  • Kp-index, 2017. https://doi.org/wdc.kugi.kyotou.ac.jp.

  • Kravtsova, M.V. and Sdobnov, V.E., Effects in cosmic rays in March 1991, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 7, pp. 958–962.

    Article  Google Scholar 

  • Kravtsova, M.V. and Sdobnov, V.E., Analysis of Forbush decreases during strong geomagnetic disturbances in March–April 2001, Astron. Lett., 2014, vol. 40, no. 8, pp. 519–525.

    Article  Google Scholar 

  • Kravtsova, M.V. and Sdobnov, V.E., Cosmic rays during great geomagnetic storms in cycle 23 of solar activity, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 2, pp. 143–150.

    Article  Google Scholar 

  • Kravtsova, M.V. and Sdobnov, V.E., Analyzing the June 2015 Forbush effect by the spectrographic global survey, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 2, pp. 177–179.

    Article  Google Scholar 

  • Lingri, D., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V., Abunin, A., and Abunina, M., Solar activity parameters and associated Forbush decreases during the minimum between the cycles 23 and 24 and the ascending phase of solar cycle 24, Sol. Phys., 2016, 291, pp. 1025–1041.

    Article  Google Scholar 

  • Liu, Y.D., Hu, H., Wang, R., Yang, Z., Zhu, B., Liu, Y.A., Luhmann, J.G., and Richardson, J.D., Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability, Astrophys. J. Lett., 2015. vol. 809, no. 2, L34. doi 10.1088/2041-8205/809/2/L34

    Article  Google Scholar 

  • Maltsev, Y.P., Arykov, A.A., Belova, E.G., Gvozdevsky, B.B., and Safargaleev, V.V., Magnetic flux redistribution in the storm time magnetosphere, J. Geophys. Res., 1996, vol. 101, pp. 7697–7707.

    Article  Google Scholar 

  • Neutron Monitor, 2017. ftp://cr0.izmiran.rssi.ru.

  • Ohtani, S., Nose, M., Rostoker, G., Singer, H., Lui, A.T.Y., and Nakamura, M., Storm-substorm relationship: Contribution of the tail current to Dst, J. Geophys. Res., 2001, vol. 106, pp. 21199–21209.

    Article  Google Scholar 

  • SOHO LASCO CME Catalog, 2017. https://doi.org/cdaw.gsfc.nasa.gov/CME_list/.

  • Solar Monitor, 2017. https://doi.org/www.solarmonitor.org. Space Physics Data Facility, 2017. https://doi.org/omniweb.gsfc.nasa.gov.

  • Wang, R., Liu, Y.D., Zimovets, I., Hu, H., Dai, X., and Yang, Z., Sympathetic solar filament eruptions, Astrophys. J. Lett., 2016, vol. 827, no. L12, doi 10.3847/2041-8205/827/1/L12

    Google Scholar 

  • Wu, Ch.-Ch., Liou, K., Lepping, R.P., Hutting, L., Plunkett, S., Howard, R.A., and Socker, D., The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s Day event (17 March 2015)”, Earth Planets Space, 2016, vol. 68, 151. doi 10.1186/s40623-016-0525-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kichigin.

Additional information

Original Russian Text © G.N. Kichigin, M.V. Kravtsova, V.E. Sdobnov, 2018, published in Geomagnetizm i Aeronomiya, 2018, Vol. 58, No. 5, pp. 608–618.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kichigin, G.N., Kravtsova, M.V. & Sdobnov, V.E. Spatial-Energy Characteristics of Cosmic Rays and Parameters of Magnetospheric Current Systems in March and June 2015. Geomagn. Aeron. 58, 586–596 (2018). https://doi.org/10.1134/S0016793218050079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218050079

Navigation