Skip to main content
Log in

Two-Dimensional Phenomenological Model of Ring Current Dynamics in the Earth’s Magnetosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The dynamics of ring current protons with variable boundary conditions in the inner magnetosphere during a magnetic storm has been studied. The spatial and temporal evolution of differential fluxes of protons in the dipole magnetic field has been calculated. The calculations have been performed with the two-dimensional Phenomenological Model of the Ring Current (PheMRC 2-D) offered by the author, which examines the radial and pitch angle diffusions with consideration of losses due to wave–particle interactions. The simulation begins with the distribution of magnetically quiet time. The model has been tested via comparison of the calculated proton fluxes with values measured on the Polar/MICS satellite during the magnetic storm on October 21–22, 1999. The calculated pitch angle distribution is quite consistent (well) with the experimental data. The model has been compared with the other ring current model (Extended Comprehensive Ring Current Model, ECRCM) (Ebihara et al., 2008). PheMRC 2-D is more accurate than ECRCM in describing the experimental data. The offered model can be used to simulate the dynamics of charged particles in the Jovian and Saturn magnetospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Albert, J.M., Using quasi-linear diffusion to model acceleration and loss from wave-particle interactions, Space Weather, 2004, vol. 2, S09S03. https://doi.org/10.1029/2004SW000069

    Article  Google Scholar 

  2. Bashkirov, V.F. and Kovtyukh, A.S., Stationary pitch angle distributions of protons of the Earth’s radiation belts in the strong dissipation region, Geomagn. Aeron., 1995, vol. 35, no. 4, p. 18–21.

    Google Scholar 

  3. Cornwall, J.M., Radial diffusion of ionized helium and protons: A probe for magnetosphere dynamics, J. Geophys. Res., 1972, vol. 77, pp. 1756–1760.

    Article  Google Scholar 

  4. Cornwall, J.M., Coroniti, F.V., and Thorne, R.M., Turbulent loss of ring current protons, J. Geophys. Res., 1970, vol. 75, no. 3, pp. 4699–4705.

    Article  Google Scholar 

  5. Daglis, I.A., Thorne, R.M., Baumjohan, W., and Levi, S., The terrestrial ring current: Origin, formation, and decay, Rev. Geophys., 1999, vol. 37, no. 4, pp. 407–438.

    Article  Google Scholar 

  6. Ebihara, Y., Fok, M.-C., Blake, J.B., and Fennell, J.F., Magnetic coupling of the ring current and the radiation belt, J. Geophys. Res., 2008, vol. 113, no. A7, A07221. https://doi.org/10.1029/2008JA013267

    Google Scholar 

  7. Fok, M.-C., Kozyra, J.U., Nagy, A.F., and Cravens, T.E., Lifetime of ring current particles due to coulomb collisions in the plasmasphere, J. Geophys. Res., 1991, vol. 96, no. A5, pp. 7861–7867.

    Article  Google Scholar 

  8. Fok, M.-C., Moore, T.E., Kozyra, J.U., Ho, G.C., and Hamilton, D.C., Three-dimensional ring current decay model, J. Geophys. Res., 1995, vol. 100, pp. 9619–9632.

    Article  Google Scholar 

  9. Fok, M.-C., Moore, T.E., and Greenspan, M.E., Ring current development during storm main phase, J. Geophys. Res., 1996, vol. 101, no. A7, pp. 15311–15322.

    Article  Google Scholar 

  10. Fok, M.-C., Wolf, R.A., Spiro, R.W., and Moore, T.E., Comprehensive computational model of Earth’s ring current, J. Geophys. Res., 2001, vol. 106, no. A5, pp. 8417–8424. https://doi.org/10.1029/2000JA000235

    Article  Google Scholar 

  11. Gendrin, R., General relationships between wave amplification and particle diffusion in a magnetoplasma, Rev. Geophys., vol. 19, no. 1, pp. 171–184. https://doi.org/10.1029/RG019i001p00171

  12. Goryainov, M.F., Panasyuk, M.I., and Senkevich, V.V., Simulation of distributions of energetic ions in the Earth’s magnetosphere, Kosm. Issled., 1987, vol. 25, no. 4, pp. 556–561.

    Google Scholar 

  13. Jordanova, V.K., Farrugia, C.J., Thorne, R.M., Khazanov, G.V., Reeves, G.D., and Thomsen, M.F., Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997 storm, J. Geophys. Res., 2001, vol. 106, no. A1, pp. 7–22.

    Article  Google Scholar 

  14. Kennel, C.F. and Petschek, H.E., Limit on stably trapped particle fluxes, J. Geophys. Res., 1966, vol. 71, no. 1, pp. 1–14.

    Article  Google Scholar 

  15. Khazanov, G.V., Kinetic Theory of the Inner Magnetospheric Plasma, New York: Springer, 2011.

    Book  Google Scholar 

  16. Khazanov, G.V., Gamayunov, K.V., Jordanova, V.K., and Krivorutsky, E.N., A self-consistent model of the interacting ring current ions and electromagnetic ion cyclotron waves, initial results: Waves and precipitating fluxes, J. Geophys. Res., 2002, vol. 107, no. A6. https://doi.org/10.1029/2001JA000180

  17. Khazanov, G.V., Gamayunov, K.V., and Jordanova, V.K., Self-consistent model of magnetospheric ring current and electromagnetic ion cyclotron waves: The 2–7 May 1998 storm, J. Geophys. Res., 2003, vol. 108, no. A12, pp. 1419–1436.

    Article  Google Scholar 

  18. Kozyra, J.U., Rasmussen, C.E., Miller, R.H., and Lyons, L.R., Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss: 1. Diffusion coefficients and timescales, J. Geophys. Res., 1994, vol. 99, no. A3, pp. 4069–4084. https://doi.org/10.1029/93JA01532

    Article  Google Scholar 

  19. Lyons, L.R. and Thorne, R.M., Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves, J. Geophys. Res., 1972, vol. 77, no. 8, pp. 5608–5614.

    Article  Google Scholar 

  20. Lyons, L.R. and Williams, D.J., Quantitative Aspects of Magnetospheric Physics, New York: Springer, 1984; Moscow, Mir, 1987.

  21. Miyoshi, Y.S., Jordanova, V.K., Morioka, A., Thomsen, M.F., Reeves, G.D., Evans, D.S., and Green, J.C., Observations and modeling of energetic electron dynamics during the October 2001 storm, J. Geophys. Res., 2006, vol. 111, no. A11. A11502. https://doi.org/10.1029/2005JA011351

    Article  Google Scholar 

  22. Nishida, A., Geomagnetic Diagnosis of the Magnetosphere, New York: Springer, 1978.

    Book  Google Scholar 

  23. Pudovkin, M.I., Raspopov, O.M., and Kleimenova, N.G., Vozmushcheniya elektromagnitnogo polya Zemli (Disturbances in the Earth’s Electromagnetic Field), vol. 1: Polyarnye magnitnye vozmushcheniya (Polar Magnetic Disturbances), Leningrad: LGU, 1975.

    Google Scholar 

  24. Sakaguchi, K., Shiokawa, K., Miyoshi, Y., Otsuka, Y., Ogawaa, T., Asamura, K., and Connors, M., Simultaneous appearance of isolated auroral arcs and Pc 1 geomagnetic pulsations at subauroral latitudes, 2008, J. Geophys. Res., vol. 113, no. A5, https://doi.org/10.1029/2007JA012888

  25. Schulz, M. and Lanzerotti, L.J., Particle Diffusion in the Radiation Belts, New York: Springer, 1974.

    Book  Google Scholar 

  26. Sheldon, R.B., Ion transport and loss in the Earth’s quiet ring current. 2. Diffusion and magnetosphere–ionosphere coupling, J. Geophys. Res., 1994, vol. 99, no. A4, pp. 5705–5720.

    Article  Google Scholar 

  27. Sheldon, R.B. and Hamilton, D.C., Ion transport and loss in the Earth’s quiet ring current. 1. Data and standard model, J. Geophys. Res., 1993, vol. 98, no. A8, pp. 13491–13508.

    Article  Google Scholar 

  28. Sibeck, D.G., McEntire, R.W., Lui, A.T.Y., Lopez, R.E., and Krimigis, S.M., Magnetic field drift shell splitting: Cause of unusual dayside particle pitch angle distributions during storms and substorms, J. Geophys. Res., 1987, vol. 92, no. A12, pp. 13485–13497.

    Article  Google Scholar 

  29. Smith, P.H. and Bewtra, N.K., Charge exchange lifetimes for ring current ions, Space Sci. Rev., 1978, vol. 22, pp. 301–305.

    Article  Google Scholar 

  30. Smolin, S.V., Pitch angle distribution effect on plasma processes in the nightside magnetosphere, Geomagn. Aeron., 1993, vol. 33, no. 5, pp. 17–25.

    Google Scholar 

  31. Smolin, S.V., Modelirovanie pitch-uglovoi diffuzii v magnitosfere Zemli (Modeling Pitch Angle Diffusion in the Earth’s Magnetosphere), Krasnoyarsk: Libra, 1996.

    Google Scholar 

  32. Smolin, S.V., Effect of magnetospheric convection on the energy distribution of protons from the Earth radiation belts, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 3, pp. 298–302.

  33. Smolin, S.V., Modeling the pitch angle distribution on the dayside of the Earth’s magnetosphere, Zh. Sib. Fed. Univ.: Ser. Mat. Fiz., 2012a, vol. 5, no. 2, pp. 269–275.

    Google Scholar 

  34. Smolin, S.V., The proton ring current development during the magnetic storm, in Proc. 9th Int. Conf. on Problems of Geocosmos, St. Petersburg, Russia, 8–12 October, 2012, St. Petersburg, 2012b, pp. 400–404.

  35. Smolin, S.V., General relations for particle diffusion in pitch angle and energy, in Proc. 10th Int. Conf. on Problems of Geocosmos, St. Petersburg, Russia, 6–10 October, 2014, St. Petersburg, 2014, pp. 399–401.

  36. Smolin, S.V., Modeling the pitch angle distribution on the nightside of the Earth’s magnetosphere, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 2, pp. 166–173.

  37. Summers, D. and Thorne, R.M., Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res., 2003, vol. 108, no. A4, 1143. https://doi.org/10.1029/2002JA009489

    Article  Google Scholar 

  38. Thorne, R.M. and Horne, R.B., Whistler absorption and electron heating near the plasmapause, J. Geophys. Res., 1996, vol. 101, no. A3, pp. 4917–4928. https://doi.org/10.1029/95JA03671

    Article  Google Scholar 

  39. Xiao, F., Chen, L., He, Y., Su, Z., and Zheng, H., Modeling for precipitation loss of ring current protons by electromagnetic ion cyclotron waves, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 1, pp. 106–111.

    Article  Google Scholar 

  40. Xiao, F., Yang, C., Zhou, Q., He, Z., He, Y., Zhou, X., and Tang, L., Nonstorm time scattering of ring current protons by electromagnetic ion cyclotron waves, J. Geophys. Res., 2012, vol. 117, no. 8, A08204. https://doi.org/10.1029/2012JA017922

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Smolin.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolin, S.V. Two-Dimensional Phenomenological Model of Ring Current Dynamics in the Earth’s Magnetosphere. Geomagn. Aeron. 59, 27–34 (2019). https://doi.org/10.1134/S0016793218040175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218040175

Navigation