Skip to main content
Log in

Dynamics of the Development of Aluminum Monoxide Clouds in the Upper Atmosphere During the Launch of Solid-Propellant Rockets

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Various mechanisms of the formation of AlO molecules during the operation of solid-propellant rocket engines in the upper atmosphere and processes of AlO glow decay are considered. The main contribution to AlO formation at altitudes of 120–200 km is made by the interaction of metallic aluminum contained in products of solid propellant combustion with atmospheric oxygen. The decrease in the brightness of AlO clouds is caused by a decrease in the AlO concentration as a result of cloud expansion due to diffusion processes and AlO oxidation with atomic oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C.W., Astrophysical Quantities, London: Athlone, 1963; Moscow: Mir, 1972

    Google Scholar 

  • Andreeva, L.A., Klyuev, O.F., Portnyagin, Yu.I., and Khanan’yan, A.A., Issledovanie protsessov v verkhnei atmosfere metodom iskusstvennykh oblakov (Study of Upper Atmospheric Processes by the Artificial Cloud Method), Leneingrad: Gidrometeoizdat, 1991.

    Google Scholar 

  • Armstrong, E.B., Observation of luminous clouds produced in the upper atmosphere by exploding grenades. I, II, III, Planet. Space Sci., 1963, vol. 11, pp. 733–758.

    Article  Google Scholar 

  • Authier, B., Blamont, J.E., and Carpentier, G., Measurement of the ionosphere temperature beginning with the twilight fluorescence of aluminum oxide (Mesure de la témperature de l’ionosphere a partir de la fluorescence crépusculaire de monoxyde d’aluminium), NASA TTF-8977, 1964.

    Google Scholar 

  • Babuk, V., Formulation factors and properties of condensed combustion products, in Chemical Rocket Propulsion, De Luca, L.T., Shimada, T., Sinditskii, V., and Calabro, M., Eds., Springer, 2017, pp. 319–340.

    Chapter  Google Scholar 

  • Ballester Olmos V. J. and Pérez, R.C., Identificados: Los OVNIS de Canarias fueron misiles Poseidón, Rev. Aeronaut. Astronaut., 2001, no. 3, pp. 201–207.

    Google Scholar 

  • Baum, F.M., Stanyukovich, K.P., and Shekhter, B.I., Fizika vzryva (Physics of an Explosion), Moscow: Fizmatlit, 1959

    Google Scholar 

  • Chernouss, S., Platov, Yu., Alpatov, V., and Uspensky, V., Optical phenomena due to rocket exhaust products in the atmosphere, Geophys. Finl., 2012, vol. 48, nos. 1–2, pp. 65–79.

    Google Scholar 

  • De Luca, L.T., Maggi, F., Dossi, S., Fassina, M., Paravan, C., and Sossi, A., Prospect of aluminum modification as energetic fuels in chemical rocket propulsion, in Chemical Rocket Propulsion, De Luca, L.T., Shimada, T., Sinditskii, V., and Calabro, M., Eds., Springer, 2017, pp. 191–234.

    Chapter  Google Scholar 

  • Ekologicheskie problemy i riski vozdeistviya raketno–kosmicheskoi tekhniki na okruzhayushchuyu prirodnuyu sredu (Ecological Problems and Environmental Impact Risks of Rocket and Space Equipment), Adushkin, V.V., Kozlov, S.I., and Petrov, A.V., Eds., Moscow: Ankil, 2000.

    Google Scholar 

  • Fontijn, A., Felder, W., and Houghton, J.J., Kinetics of Al atom oxidation, Aero Chem. Rep. DVA 3242F, Sep. 1973.

    Google Scholar 

  • Gershenzon, Yu.M., Grigor’eva, V.M., and Maksyutov, Sh.Sh., Chemistry of artificial gas clouds in the Earth’s upper atmosphere, Tr. Inst. Eksp. Meteorol.: Fiz. Verkhn. Atmos., 1990, no. 21, pp. 3–31.

    Google Scholar 

  • Golub’, A.P., Kozlov, S.I., and Tasenko, S.V., Criteria of applicability of a gas-dynamic approximation of a continuous medium to describing the dispersion of combustion products of rocket propellants, Cosmic Res., 2014, vol. 52, no. 3, pp. 185–188.

    Article  Google Scholar 

  • Guseva, N.N. and Klyuev, O.F., Calculation of radiation spectra of the conversion A2Σ+↔X2Σ+ of the AlO molecule for determining the upper atmospheric temperature, Tr. Inst. Eksp. Meteorol., 1977, no. 6(74), pp. 2–58.

    Google Scholar 

  • Holmgren, G., Bostrom, R., Kelley, M.C., et al., Trigger and active release experiment that simulated aurora particle precipitation and wave emissions, J. Geophys. Res., 1980, vol. 85, no. 10, pp. 5043–5056.

    Article  Google Scholar 

  • Houghton, J.J., Homogeneous and heterogeneous kinetics of the atomic Al/O2 reaction in the 1000–1700 K range, Symp. Int. Combust. Proc., 1975, vol. 15, pp. 775–784.

    Article  Google Scholar 

  • Kozlov, S.I. and Smirnova, N.P., Methods and tools for creating artificial formations in the near-Earth space and estimation of the characteristics of emerging disturbances, II. Estimation of the characteristics of artificial disturbances, Kosm. Issled., 1992, vol. 30, no. 5, pp. 629–693.

    Google Scholar 

  • Kozlov, S., Nikolayshvili, S., Platov, Yu., Silnikov, M., and Adushkin, V., Exceptional optical phenomena observed during the operation of Russian launchers, Acta Astronaut., 2016, vol. 126, nos. 9–10, pp. 536–540.

    Article  Google Scholar 

  • Minuteman III rocket launch, 14 Oct., 2002. http://www.youtube.com/watch?v=gfkcmd8ame0.

  • Nikolaishvili, S.Sh., Platov, Yu.V., and Chernous, S.A., The dynamics of a gas–dust cloud expansion in the upper atmosphere at a shutdown of solid-propellant rocket engines, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 5, pp. 663–670.

    Article  Google Scholar 

  • Optical phenomena observed at launches and exploration of rocket and space equipment, in Vozdeistvie raketno-kosmicheskoi tekhniki na okruzhayushchuyu sredu (Environmental Impact of Rocket and Space Equipment), Adushkin, V.V., Kozlov, S.I., and Sil’nikov, M.V., Eds., Moscow: GEOS, 2016, Ch. 9.

  • Platov, Yu. and Chernouss, S., Optical phenomena associated with the launch of a ballistic missile “Bulava” December 9, 2009, in Theory and Practice of the Energetic Materials, Proc, 2011 International Autumn Seminar on Propellants, Explosives and Pyrotechnics, September 20–23, Nanjing, China, 2011, vol. 9, pp. 439–443.

    Google Scholar 

  • Platov, Yu.V., Chernous, S.A., and Alpatov, V.V., Features of optical phenomena connected with launches of solid-propellant ballistic rockets, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 2, pp. 198–203.

    Article  Google Scholar 

  • Platov, Yu.V., Alpatov, V.V., and Klyushnikov, V.Yu., Condensation of water vapor and carbon dioxide in the jet exhausts of rocket engines:1, Model calculation of the physical conditions in a jet exhaust, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 1, pp. 99–103.

    Article  Google Scholar 

  • Simmons, F.S., Rocket Exhaust Plume Phenomenology, El Segundo, California: Aerospace Press, 2000.

    Book  Google Scholar 

  • Spell, T., Estimation of the location, trajectory, size, and altitude of the “Norway Spiral” phenomenon, 2009. http://youtube.com/watch?v=q9TlyroKp_E.

    Google Scholar 

  • Zavitsanos, P.D., Alyea, F.N., and Golden, J.A., Aluminum vapor release in the upper atmosphere. Final Tech. Rep. Apr 1974–Jan 1976, ADA028820.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Platov.

Additional information

Original Russian Text © Yu.V. Platov, S.Sh. Nikolaishvili, 2018, published in Geomagnetizm i Aeronomiya, 2018, Vol. 58, No. 4, pp. 573–578.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platov, Y.V., Nikolaishvili, S.S. Dynamics of the Development of Aluminum Monoxide Clouds in the Upper Atmosphere During the Launch of Solid-Propellant Rockets. Geomagn. Aeron. 58, 554–558 (2018). https://doi.org/10.1134/S0016793218040102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218040102

Navigation