Geomagnetism and Aeronomy

, Volume 58, Issue 3, pp 338–347 | Cite as

Long-Term Trends in the Critical Frequency of the E-layer

  • A. D. Danilov
  • A. V. Konstantinova


A search for trends k(foE) in the critical frequency of the ionospheric E layer at Juliusruh and Slough stations is performed by the method often used by the authors to analyze trends in the F2-layer parameters. It is found that k(foE) could differ in both magnitude and even sign within different time intervals. However, the k(foE) trends have been stably negative over the last two decades for both stations and all months of the year. The k(foE) values averaged over a year are −0.012 and −0.005 MHz per year for Juliusruh and Slough stations, respectively. The method used in the recent paper by Laštovička et al. (2016) to determine foE trends is analyzed, and it is shown that the difference in linear approximation of the dependence of the observed foE values on F10.7 within different time intervals could be interpreted not as the presence of a different foE dependence on the F10.7 index within these intervals but as the presence within them of foE trends that change the slope of the linear approximation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bilitza, D., International Reference Ionosphere 1990, Greenbelt, Maryland: National Space Science Data Center, 1990, NSSDC/WDC-A-R&S 90-22.Google Scholar
  2. Bremer, J., Trends in the thermosphere derived from global ionosonde observations, Adv. Space Res., 2001, vol. 28, no. 7, pp. 997–1006.CrossRefGoogle Scholar
  3. Bremer, J., Long-term trends in the ionospheric E and F1 regions, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1189–1197.CrossRefGoogle Scholar
  4. Bremer, J., Damboldt, T., Mielich, J., and Suessmann, P., Comparing long-term trends in the ionospheric F2 region with two different methods, J. Atmos. Sol.-Terr. Phys., 2012, vol. 77, pp. 174–185.CrossRefGoogle Scholar
  5. Cnossen, I. and Franzke, C., The role of the Sun in longterm change in the F2 peak ionosphere: New insights from Ensemble Empirical Mode Decomposition (EEMD) and numerical modeling, J. Geophys. Res., 2014, vol. 119, no. 10, pp. 8610–8623.CrossRefGoogle Scholar
  6. Danilov, A.D., Critical frequency foF2 as an indicator of trends in thermospheric dynamics, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, no. 13, pp. 1430–1440.CrossRefGoogle Scholar
  7. Danilov, A.D. and Konstantinova, A.V., Behavior of parameters of the ionospheric F2 layer at the turn of the centuries:1. Critical frequency, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 3, pp. 345–355.CrossRefGoogle Scholar
  8. Danilov, A.D. and Konstantinova, A.V., Reduction of the atomic oxygen content in the upper atmosphere, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 2, pp. 224–229.CrossRefGoogle Scholar
  9. Danilov, A.D. and Konstantinova, A.V., Variations in foF2 trends with season and local time, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 1, pp. 51–58.CrossRefGoogle Scholar
  10. Danilov, A.D. and Konstantinova, A.V., Trends in the critical frequency foF2 after 2009, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 3, pp. 302–310.CrossRefGoogle Scholar
  11. Danilov, A. D. and Smirnova, N.V., Long-term trends in the ion composition of the E region, Geomagn. Aeron. (Engl. Transl.), 1997, vol. 37, no. 4, pp. 422–425.Google Scholar
  12. Donaldson, J.K., Wellman, T.J., and Oliver, W.L., Longterm change in thermospheric temperature above Saint Santin, J. Geophys. Res., 2010, vol. 115, A11305. doi 10.1029/2010JA015346CrossRefGoogle Scholar
  13. Garcia, R., López-Puertas, M., Funke, B., Kinnison, D.E., Marsh, D.R., Smith, A.K., and González-Galindo, F., On the distribution of CO2 and CO in the mesosphere and lower thermosphere, J. Geophys. Res., 2014, vol. 119, no. 9, pp. 5700–5718.Google Scholar
  14. Garcia, R., López-Puertas, M., Funke, B., Kinnison, D.E., Marsh, D.R., and Qian, L., On the secular trend of COx and CO2 in the lower thermosphere, J. Geophys. Res., 2016, vol. 121, pp. 3634–3644.CrossRefGoogle Scholar
  15. Givishvili, G.V. and Leshchenko, L.N., Long-term trends in properties of the midlatitude ionosphere and thermosphere, Dokl. Akad. Nauk, 1993, vol. 333, no. 1, pp. 86–89.Google Scholar
  16. Laštovička, J., Akmaev, R.A., Beig, G., et al., Emerging pattern of global change in the upper atmosphere and ionosphere, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1255–1268.CrossRefGoogle Scholar
  17. Laštovička, J., Burešová, D., Kouba, D., and Križan, P., Stability of solar correction for calculating ionospheric trends, Ann. Geophys., 2016, vol. 34, no. 12, pp. 1191–1196.CrossRefGoogle Scholar
  18. Mikhailov, A.V., Trends in the ionospheric E-region, Phys. Chem. Earth, 2006, vol. 31, pp. 22–23.CrossRefGoogle Scholar
  19. Mikhailov, A.V., Perrone, L., and Nusinov, A.A., A mechanism of mid-latitude noontime foE long-term variations inferred from European observations, J. Geophys. Res., 2017, vol. 122. doi 10.1002/2017JA023909Google Scholar
  20. Zhang, S.R. and Holt, J.M., Millstone Hill ISR observations of upper atmospheric long-term changes: Height dependency, J. Geophys. Res., 2011, vol. 116. doi 10.1029/2010JA016414Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Applied GeophysicsMoscowRussia

Personalised recommendations