Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 3, pp 356–372 | Cite as

Global Survey Method for the World Network of Neutron Monitors

  • A. V. Belov
  • E. A. Eroshenko
  • V. G. Yanke
  • V. A. Oleneva
  • M. A. Abunina
  • A. A. Abunin
Article

Abstract

One of the variants of the global survey method developed and used for many years at the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences is described. Data from the world network of neutron monitors for every hour from July 1957 to the present has been processed by this method. A consistent continuous series of hourly characteristics of variation of the density and vector anisotropy of cosmic rays with a rigidity of 10 GV is obtained. A database of Forbush decreases in galactic cosmic rays caused by large-scale disturbances of the interplanetary medium for more than half a century has been created based on this series. The capabilities of the database make it possible to perform a correlation analysis of various parameters of the space environment (characteristics of the Sun, solar wind, and interplanetary magnetic field) with the parameters of cosmic rays and to study their interrelationships in the solar–terrestrial space. The features of reception coefficients for different stations are considered, which allows the transition from variations according to ground measurements to variations of primary cosmic rays. The advantages and disadvantages of this variant of the global survey method and the opportunities for its development and improvement are assessed. The developed method makes it possible to minimize the problems of the network of neutron monitors and to make significant use of its advantages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abunina, M., Abunin, A., Belov, A., Eroshenko, E., Gaidash, S., Oleneva, V., Yanke, V., and Kryakunova, O., On the influence of the coronal hole latitude and polarity on the geomagnetic activity and cosmic ray variations, in Proc. 34th International Cosmic Ray Conference, The Hague, Netherlands, 2016, id 082.Google Scholar
  2. Alania, M., Szabelski, J., and Wawrzynczak, A., Modeling and experimental study of the Forbush effects of galactic cosmic rays, in Proc. 28th International Cosmic Ray Conference, Tsakuba, Japan, 2003, pp. 3585–3588.Google Scholar
  3. Aleksanyan, T.M., Bednazhevsky, V.M., Blokh, Y.L., Dorman, L.I., and Starkov, F.A., Coupling coefficients of the neutron component for the stars of various multiplicities inferred from the measurements of the broad research vessel ‘Academician Kurchatov’, in Proc. 16th International Cosmic Ray Conference, Kyoto, Japan, 1979, vol. 4, pp. 315–320.Google Scholar
  4. Altuchov, A.M., Krimsky, G.F., and Kuzmin, A.I., The method of “global survey” for investigation cosmic ray modulation, in Proc. 11th International Cosmic Ray Conference, Budapest, Hungary, 1969, vol. 4, pp. 457–460.Google Scholar
  5. Asipenka, A.S., Belov, A.V., Eroshenko, E.A., Klepach, E.G., Oleneva, V.A., and Yanke, V.G., Interactive database of cosmic ray anisotropy (DB A10), in Proc. 30th International Cosmic Ray Conference, Merida, Mexico, 2007, vol. 1, pp. 629–632.Google Scholar
  6. Belov, A.V., Large scale modulation: View from the Earth, Space Sci. Rev., 2000, vol. 93, pp. 79–105.CrossRefGoogle Scholar
  7. Belov, A.V., Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena, in Proc. IAU Symposium No. 257, 2009, pp. 439–450.Google Scholar
  8. Belov, A.V. and Eroshenko, E.A., The reception coefficients of neutron monitors, Proc. 17th International Cosmic Ray Conference, Paris, 1981, vol. 4, pp. 97–100.Google Scholar
  9. Belov, A.V., Blokh, Ya.A., Dorman, L.I., Eroshenko, E.A., Inozemtseva, O.I., and Kaminer, N.S., Studies of isotropic and anisotropic cosmic ray variations in the Earth’s vicinities during disturbed periods, in Proc. 13th International Cosmic Ray Conference, Denver, USA, 1973, vol. 2, pp. 1247–1255.Google Scholar
  10. Belov, A.V., Blokh, Ya.L., Dorman, L.I., Eroshenko, E.A., Inozemtseva, O.I., and Kaminer, N.S., Anisotropy and time-dependent changes in the spectrum of cosmic-ray intensity variations during August, 1972, Izv. Akad. Nauk SSSR, Ser. Fiz., 1974, vol. 38, pp. 1867–1875.Google Scholar
  11. Belov, A.V., Eroshenko, E.A., Mueller-Mellin, R., Kunow, H., Heber, B., and Yanke, V.G., Latitudinal and radial variations in protons and alpha-particles with energies more than 2 GeV/n at the solar maximum: Data from the Ulysses space mission and neutron monitor network, Geomagn. Aeron. (Engl. Transl.), 2003a, vol. 43, no. 4, pp. 429–436.Google Scholar
  12. Belov, A.V., Eroshenko, E.A., Heber, B., Yanke, V.G., Raviart, A., Müller-Mellin, R., and Kunow, H., Latitudinal and radial variation of >2 GeV/n protons and alpha particles in the southern heliosphere at solar maximum: ULYSSES COSPIN KET and neutron monitor network observations, Ann. Geophys., 2003b, vol. 21, no. 6, pp. 1295–1302.CrossRefGoogle Scholar
  13. Belov, A., Baisultanova, L., Eroshenko, E., Yanke, V., Mavromichalaki, H., Plainaki, C., Mariatos, G., and Pchelkin, V., Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003, J. Geophys. Res., 2005, vol. 110, A09S20. doi 10.1029/2005JA011067CrossRefGoogle Scholar
  14. Belov, A., Eroshenko, E., Oleneva, V., and Yanke, V., Connection of Forbush effects to the X-ray flares, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, nos. 2–4, pp. 342–350.CrossRefGoogle Scholar
  15. Belov, A.V., Asipenka, A., Dryn’, E.A., Eroshenko, E.A., Kryakunova, O.N., Oleneva, V.A., and Yanke, V., Behavior of the cosmic-ray vector anisotropy before interplanetary shocks, Bull. Russ. Acad. Sci.: Phys., 2009, vol. 73, no. 3, pp. 331–333.CrossRefGoogle Scholar
  16. Bieber, J. and Evenson, P., Spaceship Earth—an optimized network of neutron monitor, in Proc. 24th International Cosmic Ray Conference, Rome, 1995, vol. 4, pp. 1316–1319.Google Scholar
  17. Cane, H., Coronal mass ejections and Forbush decreases, Space Sci. Rev., 2000, vol. 93, nos. 1–2, pp. 55–77.CrossRefGoogle Scholar
  18. Carmichael, H., Shea, M.A., Smart, D.F., and McCall, J.R., Geographically smoothed geomagnetic cutoffs, Can. J. Phys., 1969, vol. 47, pp. 2067–2072.CrossRefGoogle Scholar
  19. Chirkov, N.P., Altukhov, A.M., Krymskii, G.F., et al., Cosmic ray distribution and the acceptance vectors of detectors. III, Geomagn. Aeron., 1967, vol. 7, no. 4, pp. 621–631.Google Scholar
  20. Clem, J.M. and Dorman, L.I., Neutron monitor response functions, Space Sci. Rev., 2000, vol. 93, pp. 335–359.CrossRefGoogle Scholar
  21. Dorman, L.I., Variatsii kosmicheskikh luchei (Cosmic Ray Variations), Moscow: Gostekhteorizdat, 1957.Google Scholar
  22. Dorman, L.I., Meteorologicheskie effekty kosmicheskikh luchei (Meteorological Effects of Cosmic Rays), Moscow: Nauka, 1972.Google Scholar
  23. Dorman, L.I., Cosmic Rays in Magnetospheres of the Earth and Other Planets, Springer, 2009.Google Scholar
  24. Dorman, L.I., Cosmic Rays in the Earth’s Atmosphere and Underground, Springer, 2010.Google Scholar
  25. Dorman, L.I. and Yanke, V.G., On the theory of meteorological effects of cosmic rays, Izv. Akad. Nauk SSSR: Ser. Fiz., 1971a, vol. 35, no. 12, pp. 2556–2570.Google Scholar
  26. Dorman, L.I. and Yanke, V.G., On the theory of meteorological effects of cosmic rays, II, Izv. Akad. Nauk SSSR: Ser. Fiz., 1971b, vol. 35, no. 12, pp. 2571–2582.Google Scholar
  27. Dorman, L.I., Fedchenko, S.G., Granitsky, L.V., and Rishe, G.A., Coupling and barometer coefficients for measurements of cosmic ray variations at altitudes of 260–400 mb, in Proc. 11th International Cosmic Ray Conference, Budapest, 1970, vol. 29, pp. 233–236.Google Scholar
  28. Dorman, L.I., Smirnov, V.S., and Tyasto, M.I., Kosmicheskie luchi v magnitnom pole Zemli (Cosmic Rays in the Earth’s Magnetic Field), Moscow: Nauka, 1971.Google Scholar
  29. Dorman, L.I., Smirnov, V.S., and Tyasto, M.I., Cosmic Rays in the Earth’s Magnetic Field, Washington, D.C.: National Aeronautics and Space Administration, 1973.Google Scholar
  30. Dvornikov, V.M., Sdobnov, V.E., and Sergeev, A.V., Analysis of cosmic ray pitch-angle anisotropy during the Forbush-effect in June 1972 by the method of spectrographic global survey, in Proc. 18th International Cosmic Ray Conference, Bangalore, India, 1983, vol. 3, pp. 249–252.Google Scholar
  31. Dvornikov, V.M., Sdobnov, V.E., and Sergeev, A.V., The method of spectrographic global survey for analyzing variations in the intensity of cosmic rays of interplanetary and magnetospheric origin, in Variatsii kosmicheskikh luchei i issledovaniya kosmosa (Cosmic Ray Variations and Space Research), Moscow: IZMIRAN, 1986, pp. 232–237.Google Scholar
  32. Dvornikov, V.M., Kravtsova, M.V., and Sdobnov, V.E., Coronal mass ejections and effects in cosmic rays, Izv. Ross. Akad. Nauk: Ser. Fiz., 2006, vol. 70, no. 10, pp. 1504–1507.Google Scholar
  33. Evenson, P. and Pyle, R., The University of Delaware’s Bartol Neutron Monitor Network, 2017. http://cosray. phys.uoa.gr/images/Pres/Posters/P01_Evenson_ Pyle.pdf.Google Scholar
  34. Forsythe, G., Malcolm, M., and Moler, C., Computer Methods for Mathematical Computations, Englewood Cliffs, New Jersey: Prentice Hall, 1977; Moscow: Mir, 1980.Google Scholar
  35. Kobelev, P., Belov, A., Eroshenko, E., and Yanke, V., Coupling coefficients and energy characteristics of the ground level cosmic ray detectors, in Proc. 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, 2013, id 878.Google Scholar
  36. Korotkov, V.K., Berkova, M.D., Belov, A.V., Kobelev, P.G., Eroshenko, E.A., and Yanke, V.G., Effect of snow in cosmic ray variations and methods for taking it into consideration, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 2, pp. 247–253.CrossRefGoogle Scholar
  37. Korotkov, V., Berkova, M., Belov, A., Eroshenko, E., Yanke, V., and Pyle, R., Procedure to emend neutron monitor data that are affected by snow accumulations on and around the detector housing, J. Geophys. Res.: Space, 2013, vol. 118, no. 11, pp. 6852–6857.CrossRefGoogle Scholar
  38. Krymskii, G.F., Altukhov, A.M., Kuz’min, A.I., and Skripin, G.V., Novyi metod issledovaniya anizotropii kosmicheskikh luchei. Issledovanie po geomagnetizmu i aeronomii (New Method for Studying the Cosmic Ray Anisotropy. A Study of Geomagnetism and Aeronomy). Moscow: Nauka, 1966a.Google Scholar
  39. Krymskii, G.F., Kuz’min, A.I., Chirkov, N.P., et al., Cosmic ray distribution and the acceptance vectors of detectors. I, Geomagn. Aeron., 1966b, vol. 6, no. 8, pp. 991–996.Google Scholar
  40. Krymskii, G.F., Kuz’min, A.I., Chirkov, N.P., et al., Cosmic ray distribution and the acceptance vectors of detectors. I, Geomagn. Aeron., 1967, vol. 7, no. 1, pp. 11–15.Google Scholar
  41. Krymskii, G.F., Kuz’min, A.I., Krivoshapkin, P.A., Samsonov, I.S., Skripin, G.V., Transkii, I.A., and Chirkov, N.P., Kosmicheskie luchi i solnechnyi veter (Cosmic Rays and Solar Wind), Novosibirsk: Nauka, 1981.Google Scholar
  42. Lockwood, J.A., Forbush decreases in the cosmic radiation, Space Sci. Rev., 1971, vol. 12, no. 5, pp. 658–715.CrossRefGoogle Scholar
  43. Lockwood, J.A., List of Forbush decreases 1954–1990 with supplemental information, Sol. Geophys. Data, 1990, no. 549, pp. 154–163.Google Scholar
  44. McCracken, K.G., Rao, V.R., and Shea, M.A., The trajectories of cosmic rays in a high degree simulation of the geomagnetic field, Tech. Rep. no. 77, Massachusetts Institute of Technology, 1962.Google Scholar
  45. McCracken, K.G., Rao, V.R., Fowler, B.C., Shea, M.A., and Smart, D.F., Cosmic Ray Tables (Asymptotic Directions, Variational Coefficients and Cut-off Rigidities), IQSY Instruction Manual No. 10, London: IQSY Committee, 1965.Google Scholar
  46. Moraal, H., Belov, A., and Clem, J., Design and co-ordination of multi-station international neutron monitor network, Space Sci. Rev., 2000, vol. 93, pp. 285–303.CrossRefGoogle Scholar
  47. Nagashima, K., Three-dimensional cosmic ray anisotropy in interplanetary space, Rep. Ionos. Space Res., 1971, vol. 25, pp. 189–211.Google Scholar
  48. Nagashima, K., Sakakibara, S., Murakami, K., and Morishita, I., Response and yield functions of neutron monitor, galactic cosmic-ray spectrum and its solar modulation, derived from all the available world-wide surveys, Nuovo Cimento C, 1989, vol. 12, no. 2, pp. 173–209.CrossRefGoogle Scholar
  49. Pomerantz, M.A. and Duggal, S.P., North–south anisotropies in the cosmic radiation, J. Geophys. Res., 1972, vol. 77, pp. 263–265.CrossRefGoogle Scholar
  50. Richardson, I.G., Dvornikov, V.M., Sdobnov, V.E., and Cane, H.V., Bidirectional particle flows at cosmic ray and lower (~1 MeV) energies and their association with interplanetary coronal mass ejections/ejecta, J. Geophys. Res., 2000, vol. 105, no. A6, pp. 12579–12592.CrossRefGoogle Scholar
  51. Russell, C.T., Geophysical coordinate transformations, Cosmic Electrodyn., 1971, vol. 2, pp. 184–196.Google Scholar
  52. Shea, M.A., Smart, D.F., and McCall, J.R., A five degree by fifteen degree world grid of trajectory-determined vertical cutoff rigidities, Can. J. Phys., 1968, vol. 46, pp. 1098–1101.CrossRefGoogle Scholar
  53. Shea, M.A., Smart, D.F., Humble, J.E., Fluckiger, E.O., Gentile, L.C., and Nichol, M.R., A revised standard format for cosmic ray ground-level event data, in Proc. 20th International Cosmic Ray Conference, Moscow, 1987, vol. 3, pp. 171–174.Google Scholar
  54. Smart, D.F., World grid of calculated cosmic ray vertical cutoff rigidities for epoch 1990.0, Proc. 25th International Cosmic Ray Conference, Durban, South Africa, 1997, vol. 2, pp. 401–404.Google Scholar
  55. Yasue, S., Mori, S., Sakakibara, S., and Nagashima, K., Coupling Coefficients of Cosmic Ray Daily Variations for Neutron Monitor Stations, Nagoya: Cosmic Ray Research Laboratory, 1982, CRRL Rep. no. 7.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Belov
    • 1
  • E. A. Eroshenko
    • 1
  • V. G. Yanke
    • 1
  • V. A. Oleneva
    • 1
  • M. A. Abunina
    • 1
  • A. A. Abunin
    • 1
  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave PropagationRussian Academy of Sciences (IZMIRAN)Troitsk, MoscowRussia

Personalised recommendations