Skip to main content
Log in

Simulation of Physical Phenomena in the Ionosphere and Magnetosphere of the Earth on Krot Plasma Device. Some Results and Prospects

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Krot device is a unique installation of the scientific infrastructure of the Russian Federation. It is a source of highly uniform low-temperature plasma that takes up to several tens of cubic meters. The setup makes it possible to perform both scaling laboratory simulations of ionospheric and magnetospheric phenomena in the approximation of unbound plasma, as well as plasma tests of full-size samples of the onboard equipment of spacecraft (SC). The simulation results of the dynamics and interaction of small-scale thermal plasma irregularities occurring during ionospheric heating experiments are presented. The impedance of the small-size models of RESONANCE and STRANNIK SC electric antennas in plasma is measured. The possible use of free-space calibration of antennas in the magnetospheric portions of the orbit in the ELF and VLF ranges is confirmed. The efficiency of a new plasma parameters resonance sensor for the TRABANT SC in the ionospheric range of electron densities is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aidakina, N.A., Gushchin, M.E., Zudin, I.Yu., Korobkov, S.V., Kostrov, A.V., and Strikovskii, A.V., Quasistationary magnetic field generated in a plasma by a whistler-mode radio pulse, JETP Lett., 2011, vol. 93, no. 9, pp. 498–502.

    Article  Google Scholar 

  • Aidakina, N.A., Gushchin, M.E., Zudin, I.Yu., Korobkov, S.V., Kostrov, A.V, and Strikovskii, A.V., Cross-modulation of whistler waves in a magnetized plasma, JETP Lett., 2015, vol. 101, no. 4, pp. 236–239.

    Article  Google Scholar 

  • Alfvén, H. and Falthammer, C.-G., Cosmical Electrodynamics, Oxford: Clarendon, 1963; Moscow: Mir, 1967.

    Google Scholar 

  • Bell, T.F., Graf, K., Inan, U.S., Piddyachiy, D., and Parrot, M., DEMETER observations of ionospheric heating by powerful VLF transmitters, Geophys. Res. Lett., 2011, vol. 38, L11103.

    Google Scholar 

  • Blaunstein, N., Evolution of a stratified plasma structure induced by local heating of the ionosphere, J. Atmos. Terr. Phys., 1997, vol. 59, no. 3, pp. 351–361.

    Article  Google Scholar 

  • Chernyshov, A.A., Chugunin, D.V., Mogilevsky, M.M., Moiseenko, I.L., Ilyasov, A.A., Vovchenko, V.V., Pulinets, S.A., Klimenko, M.V., Zakharenkova, I.E., Kostrov, A.V., Gushchin, M.E., and Korobkov, S.V., Approaches to studying the multiscale ionospheric structure using nanosatellites, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 1, pp. 72–79.

    Article  Google Scholar 

  • Egorov, S.V., Kostrov, A.V., and Tronin, A.V., Thermal diffusion and eddy currents in a magnetized plasma, JETP Lett., 1988, vol. 47, no. 2, pp. 102–106.

    Google Scholar 

  • Fradin, A.Z. and Ryzhkov, E.V., Izmerenie parametrov antenno-fidernykh ustroistv (Measurements of the Parameters of Antenna-Feeder Devices), Moscow: Svyaz’izdat, 1962.

    Google Scholar 

  • Frolov, V.L., Rapoport, V.O., Komrakov, G.P., Belov, A.S., Markov, G.A., Parrot, M., Rauch, J.-L., and Mishin, E.V., Density ducts formed by heating the Earth’s ionosphere with high-power HF radio waves, JETP Lett., 2008, vol. 88, no. 12, pp. 790–794.

    Article  Google Scholar 

  • Frolov, V.L., Rapoport, V.O., Shorokhova, E.A., Aidakina, N.A., Gushchin, M.E., Zudin, I.Yu., Korobkov, S.B., Kostrov, A.V., Parrot, M., and Rauch, J.-L., Fine structure of density ducts formed by active radiofrequency action on laboratory and space plasmas, JETP Lett., 2015a, vol. 101, no. 5, pp. 313–317.

    Article  Google Scholar 

  • Frolov, V.L., Bolotin, I.A., Komrakov, G.P., Glukhov, Ya.V., Andreeva, E.S., Kunitsyn, V.E., and Kurbatov, G.A., GPS-diagnosis of large-scale perturbations of plasma density in the outer ionosphere of the Earth caused by the modification of the F2-region of the ionosphere using powerful HF radio waves, Geliogeofiz. Issled., 2015b, no. 13, pp. 49–61.

    Google Scholar 

  • Galeev, A.A., Galperin, Yu.I., and Zelenyi, L.M., The INTERBALL project to study solar-terrestrial physics, Cosmic Res., 1996, vol. 34, no. 4, pp. 313–333.

    Google Scholar 

  • Gekelman, W., Pfister, H., and Lucky, Z., Design, construction, and properties of the large plasma research device—The LAPD at UCLA, Rev. Sci. Instrum., 1991, vol. 62, no. 12, pp. 2875–2883.

    Article  Google Scholar 

  • Gekelman, W., Pribyl, P., Lucky, Z., Drandell, M., Leneman, D., Maggs, J., Vincena, S., Van Compernolle, B., Tripathi, S.K.P., Morales, G., Carter, T.A., Wang, Y., and DeHaas, T., The upgraded large plasma device, a machine for studying frontier basic plasma physics, Rev. Sci. Instrum., 2016, vol. 87, 025105.

  • Gurevich, A., Hagfors, T., Carlson, H., Karashtin, A., and Zybin, K., Self-oscillations and bunching of striations in ionospheric modifications, Phys. Lett. A, 1998, vol. 239, pp. 385–392.

    Article  Google Scholar 

  • Gushchin, M.E., Korobkov, S.V., Kostrov, A.V., Strikovskii, A.V., and Zaboronkova, T.M., Propagation of whistlers in a plasma with a magnetic field duct, JETP Lett., 2005, vol. 81, no. 5, pp. 214–217.

    Article  Google Scholar 

  • Gushchin, M.E., Korobkov, S.V., Kostrov, A.V., and Strikovskii, A.V., Parametric generation of whistler waves due to the interaction of high-frequency wave beams with a magnetoplasma, JETP Lett., 2008a, vol. 88, no. 11, pp. 720–724.

    Article  Google Scholar 

  • Gushchin, M.E., Korobkov, S.V., Kostrov, A.V., Starodubtsev, M.V., and Strikovsky, A.V., Whistler waves in plasmas with time-varying magnetic field: Laboratory investigation, Adv. Space Res., 2008b, vol. 42, no. 5, pp. 979–986.

    Article  Google Scholar 

  • Gushchin, M.E., Korobkov, S.V., Kostrov, A.V., Odzerikho, D.A., Priver, S.E., and Strikovskii, A.V., Parametric generation of low-frequency waves by plasma electrons accelerated under electron cyclotron resonance conditions, JETP Lett., 2010, vol. 92, no. 2, pp. 85–90.

    Article  Google Scholar 

  • Hartley, D.P., Kletzing, C.A., Kurth, W.S., Hospodarsky, G.B., Bounds, S.R., Averkamp, T.F., Bonnell, J.W., Santolik, O., and Wygant, J.R., An improved sheath impedance model for the Van Allen probes EFW instrument: Effects of the spin axis antenna, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 4, pp. 4420–4429.

    Article  Google Scholar 

  • Kogogin, D.A., Nasyrov, I.A., Grach, S.M., Shindin, A.V., and Zagretdinov, R.V., Dynamics of large-scale ionospheric inhomogeneities caused by a powerful radio emission of the Sura facility from the data collected onto ground-based GNSS network, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 1, pp. 93–106.

    Article  Google Scholar 

  • Kostrov, A.V., Gushchin, M.E., Korobkov, S.V., and Strikovskii, A.V., Parametricheskoe preobrazovanie amplitudy i chastoty svistovoi volny v magnitoaktivnoi plazme, JETP Lett., 2003, vol. 78, no. 9, pp. 538–541.

    Article  Google Scholar 

  • Maggs, J.E. and Morales, G.J., Magnetic fluctuations associated with field-aligned striations, Geophys. Res. Lett., 1996, vol. 23, no. 6, pp. 633–636.

    Article  Google Scholar 

  • Maggs, J.E., Morales, G.J., and Gekelman, W., Laboratory studies of field-aligned density striations and their relationship to auroral processes, IEEE Trans. Plasma Sci., 1997, vol. 4, no. 5, pp. 1881–1888.

    Google Scholar 

  • Mareev, E.A. and Chugunov, Yu.V., Antenny v plazme (Antennas in Plasma), Nizhny Novgorod: IPF AN SSSR, 1991.

    Google Scholar 

  • Markov, G.T. and Sazonov, D.M., Antenny (Antennas), Moscow: Energiya, 1975.

    Google Scholar 

  • Milikh, G.M., Papadopoulos, K., Shroff, H., Chang, C.L., Wallace, T., Mishin, E.V., Parrot, M., and Berthelier, J.J., Formation of artificial ionospheric ducts, Geophys. Res. Lett., 2008, vol. 35, L17104.

    Article  Google Scholar 

  • Mogilevsky, M.M., Buabdellakh, A., de la Port, B., Aleksandrova, T.V., Romantsova, T.V., and Lefeuvre, F., Measurements of electromagnetic ULF fields onboard the auroral probe satellite: the IESP experiment, Cosmic Res., 1999, vol. 37, no. 2, pp. 113–120.

    Google Scholar 

  • Mogilevsky, M.M., Zelenyi, L.M., Demekhov, A.G., Petrukovich, A.A., and Shklyar, D.R., RESONANCE project for studies of wave-particle interactions in the inner magnetosphere, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, Summers, D., Mann, I.R., Baker, D.N., and Schulz, M., Eds., Am. Geophys. Union, 2012, vol. 199, pp. 117–126. doi 10.1029/2012GM001334

    Google Scholar 

  • Parrot, M., Sauvaud, J.A., Berthelier, J.J., and Lebreton, J.P., First in-situ observations of strong ionospheric perturbations generated by a powerful VLF ground-based transmitter, Geophys. Res. Lett., 2007, vol. 34, L11111.

    Article  Google Scholar 

  • Petrukovich, A.A., Mogilevsky, M.M., Chernyshov, A.A., and Shklyar, D.R., Some aspects of magnetosphere–ionosphere relations, Phys.-Usp., 2015, vol. 58, no. 6, pp. 606–611.

    Article  Google Scholar 

  • Rapoport, V.O., Frolov, V.L., Polyakov, S.V., Komrakov, G.P., Ryzhov, N.A., Markov, G.A., Belov, A.S., Parrot, M., and Rauch, J.L., VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility, J. Geophys. Res., 2010, vol. 115, A10322.

    Article  Google Scholar 

  • Ryabov, A.V., Grach, S.M., Shindin, A.V., and Kotik, D.S., Studying characteristics of the large-scale ionospheric irregularities induced by high-power HF radio emission with GPS diagnosis, Radiophys. Quantum Electron., 2011, vol. 54, no. 7, pp. 441–451.

    Article  Google Scholar 

  • Sauvaud, J.A., Maggiolo, R., Jacquey, C., Parrot, M., Berthelier, J.-J., Gamble, R.J., and Rodger, C.J., Radiation belt electron precipitation due to VLF transmitters: Satellite observations, Geophys. Res. Lett., 2008, vol. 35, no. 9, L09101.

    Article  Google Scholar 

  • Shaposhnikov, V.E., Korobkov, S.V., Rucker, H.O., Kostrov, A.V., Gushchin, M.E., and Litvinenko, G.V., Parametric mechanism for the formation of Jovian millisecond radio bursts, J. Geophys. Res.: Space Phys., 2011, vol. A116, no. A3, A03205.

    Google Scholar 

  • Shkarofsky, I.P., Johnston, T.W., and Bachinski, M.P., The Particle Kinetics of Plasma, London: Addison-Wesley, 1966; Moscow: Atomizdat, 1969.

    Google Scholar 

  • Starodubtsev, M.V., Nazarov, V.V., Gushchin, M.E., and Kostrov, A.V., Laboratory modeling of ionospheric heating experiments, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 10, pp. 10 481–10 495.

    Article  Google Scholar 

  • Stenzel, R.L., Microwave resonator probe for localized density measurements in weakly magnetized plasma, Rev. Sci. Instrum., 1976, vol. 47, no. 5, pp. 603–607.

    Article  Google Scholar 

  • Titova, E.E., Demekhov, A.G., Mochalov, A.A., Gvozdevskii, B.B., and Mogilevsky, M.M., and Parrot, M., ELF/VLF perturbations above the Haarp transmitter recorded by the Demeter satellite in the upper ionosphere, Radiophys. Quantum Electron., 2015, vol. 58, no. 3, pp. 155–172.

    Article  Google Scholar 

  • Yanin, D.V., Kostrov, A.V., Smirnov, A.I., and Strikovskii, A.V., Diagnostics of plasma density nonstationary perturbations, Tech. Phys., 2008, vol. 53, no. 1, pp. 129–133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Aidakina.

Additional information

Original Russian Text © N.A. Aidakina, A.G. Galka, V.I. Gundorin, M.E. Gushchin, I.Yu. Zudin, S.V. Korobkov, A.V. Kostrov, K.N. Loskutov, M.M. Mogilevskiy, S.E. Priver, A.V. Strikovskiy, D.V. Chugunin, D.V. Yanin, 2018, published in Geomagnetizm i Aeronomiya, 2018, Vol. 58, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aidakina, N.A., Galka, A.G., Gundorin, V.I. et al. Simulation of Physical Phenomena in the Ionosphere and Magnetosphere of the Earth on Krot Plasma Device. Some Results and Prospects. Geomagn. Aeron. 58, 314–324 (2018). https://doi.org/10.1134/S0016793218030027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218030027

Navigation