Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 2, pp 273–280 | Cite as

Spatial and Temporal Variations of Infrared Emissions in the Upper Atmosphere. 3. 5.3-μm Nitric Oxide Emission

  • A. I. Semenov
  • I. V. Medvedeva
  • V. I. Perminov
Article
  • 14 Downloads

Abstract

The results of rocket and satellite measurements available in the literature of 5.3-μm nitric oxide emission in the upper atmosphere have been systematized and analyzed. Analytical dependences describing the height distribution of volumetric intensity of 5.3-μm emission of the NO molecule and its variations in a range of heights from 100 to 130 km as a function of the time of year, day, latitude, and solar activity have been obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler-Golden, S.M., Matthew, M.W., and Smith, D.R., Upper atmospheric infrared radiance from CO2 and no observed during the SPIRIT 1 rocket experiment, J. Geophys. Res., 1991, vol. 96, no. A7, pp. 11319–11329.CrossRefGoogle Scholar
  2. Baker, K.D., Baker, D.J., Ulwick, J.C., and Stair, A.T., Measurements of 1.5-to 5.3-μm infrared enhancements associated with a bright auroral breakup, J. Geophys. Res., 1977, vol. 82, no. 25, pp. 3518–3528.CrossRefGoogle Scholar
  3. Ballard, J., Kerridge, B.J., Morris, P.E., and Taylor, F.W., Observations of ν = 1–0 emission from thermospheric nitric oxide by ISAMS, Geophys. Res. Lett., 1993, vol. 20, no. 12, pp. 1311–1314.CrossRefGoogle Scholar
  4. Bermejo-Pantaleón, D., Funke, B., López-Puertas, M., García-Comas, M., Stiller, G.P., von Clarmann, T., Linden, A., Grabowski, U., Höpfner, M., Kiefer, M., Glatthor, N., Kellmann, S., and Lu, G., Global observations of thermospheric temperature and nitric oxide from MIPAS spectra at 5.3 μm, J. Geophys. Res., 2011, vol. 116, A10313. doi 10.1029/2011JA016752CrossRefGoogle Scholar
  5. Degges, T.C., Vibrationally excited nitric oxide in the upper atmosphere, Appl. Opt., 1971, vol. 10, no. 8, pp. 1856–1860.CrossRefGoogle Scholar
  6. Funke, B., López-Puertas, M., von Clarmann, T., Stiller, G.P., Fischer, H., Glatthor, N., Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Tsidu, G.M., Milz, M., Steck, T., and Wang, D.Y., Retrieval of stratospheric NOx from 5.3 and 6.2 μm nonlocal thermodynamic equilibrium emissions measured by Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat, J. Geophys. Res., 2005, vol. 110, D09302. doi 10.1029/2004JD005225Google Scholar
  7. Gardner, J.L., Funke, B., Mlynczak, M.G., López-Puertas, M., Martin-Torres, F.J., Russell, J.M., Miller, S.M., Sharma, R.D., and Winick, J.R., Comparison of nighttime nitric oxide 5.3 μm emissions in the thermosphere measured by MIPAS and SABER, J. Geophys. Res., 2007, vol. 112, A10301. doi 10.1029/2006JA011984Google Scholar
  8. Gilmore, F.R., Potential energy curves for N2, NO, O2 and corresponding ions, J. Quant. Spectrosc. Radiat. Transfer, 1965, vol. 5, no. 2, pp. 369–390.CrossRefGoogle Scholar
  9. Krasovskii, V.I., Shtili i shtormy v verkhnei atmosfere (Calms and Storms in the Upper Atmosphere), Moscow: Nauka, 1971.Google Scholar
  10. Mlynczak, M.G., Hunt, L.A., Marshall, B.T., Martin-Torres, F.J., Mertens, C.J., Russell, J.M., Remsberg, E.E., López-Puertas, M., Picard, R., Winick, J., Wintersteiner, P., Thompson, R.E., and Gordley, L.L., Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument, J. Geophys. Res., 2010, vol. 115, A03309. doi 10.1029/2009JA014713CrossRefGoogle Scholar
  11. Nicolet, M., The solar spectral irradiance and its action in the atmospheric photodissociation processes, Planet. Space Sci., 1981, vol. 29, no. 9, pp. 951–974.CrossRefGoogle Scholar
  12. Ogawa, T., Excitation processes of infrared atmospheric emissions, Planet. Space Sci., 1976, vol. 24, no. 8, pp. 749–756.CrossRefGoogle Scholar
  13. Ogawa, T. and Kondo, Y., Diurnal variability of thermospheric N and NO, Planet. Space Sci., 1977, vol. 25, no. 8, pp. 735–742.CrossRefGoogle Scholar
  14. Rothman, L.S., Clough, S.A., McClatchey, R.A., Young, L.G., Snider, D.E., and Goldman, A., AFGL trace gas compilation, Appl. Opt., 1978, vol. 17, no. 4, p. 507.CrossRefGoogle Scholar
  15. Rothman, L.S., Goldman, A., Gillis, J.R., Gamache, R.R., Pickett, H.M., Poynter, R.L., Husson, N., and Chedin, A., AFGL trace gas compilation: 1982 version, Appl. Opt., 1983, vol. 22, no. 11, pp. 1616–1627.CrossRefGoogle Scholar
  16. Rusanov, V.D. and Fridman, A.A., Fizika khimicheski aktivnoi plazmy (Physics of the Chemically Active Plasma), Moscow: Nauka, 1984.Google Scholar
  17. Schurin, B. and Ellis, R.E., First and second-overtone intensity measurements for CO and NO, J. Chem. Phys., 1966, vol. 45, no. 7, pp. 2528–2532.CrossRefGoogle Scholar
  18. Sharma, R.D. and Duff, J.W., Determination of translational temperature of the high altitude terrestrial thermosphere from the rotational distribution of the 5.3-μm emission from NO (n = 1), Geophys. Res. Lett., 1997, vol. 24, no. 19, pp. 2407–2410. 1997.CrossRefGoogle Scholar
  19. Sharma, R.D., Dothe, H., and von Esse, F., On the rotational distribution of the 5.3 μm “thermal” emission from nitric oxide in the terrestrial thermosphere, J. Geophys. Res., 1996a, vol. 101, no. A8, pp. 17129–17135.CrossRefGoogle Scholar
  20. Sharma, R.D., Dothe, H., von Esse, F., Kharchenko, V.A., Sun, Y., and Dalgarno, A., Production of vibrationally and rotationally excited no in the night time terrestrial atmosphere, J. Geophys. Res., 1996b, vol. 101, no. A9, pp. 19707–19713.CrossRefGoogle Scholar
  21. Sharma, R.D., Dothe, H., and Duff, J.W., Model of the 5.3 μm radiance from NO during the sunlit terrestrial thermosphere, J. Geophys. Res., 1998, vol. 103, no. A7, pp. 14753–14768.CrossRefGoogle Scholar
  22. Sheese, P.E., Strong, K., Gattinger, R.L., Llewellyn, E.J., Urban, J., Boone, C.D., and Smith, A.K., Odin observations of Antarctic nighttime NO densities in the mesosphere–lower thermosphere and observations of a lower NO layer, J. Geophys. Res., 2013, vol. 118, pp. 7414–7425. doi 10.1002/jgrd.50563Google Scholar
  23. Shefov, N.N., Semenov, A.I., and Khomich, V.I., Izluchenie verkhnei atmosfery–indikator ee struktury i dinamiki (Airglow as an Indicator of Upper Atmospheric Structure and Dynamics), Moscow: GEOS, 2006.Google Scholar
  24. Smith, D.R. and Ahmadjin, M., Observation of nitric oxide rovibrational band head emission in quiescent airglow during the CIRRIS 1a space shuttle experiment, Geophys. Res. Lett., 1993, vol. 20, no. 23, pp. 2679–2682.CrossRefGoogle Scholar
  25. Ulwick, J.C., Baker, K.D., Stair, A.T., Frings, W., Hennig, R., Grossmann, K.U., and Hegblom, E.R., Rocket-borne measurements of atmospheric fluxes, J. Atmos. Terr. Phys., 1985, vol. 47, nos. 1–3, pp. 123–131.CrossRefGoogle Scholar
  26. Witt, G., Rose, J., and Llewellyn, E.J., The airglow continuum at high latitudes—An estimate of the NO concentration, J. Geophys. Res., 1981, vol. 86, no. A2, pp. 623–628.CrossRefGoogle Scholar
  27. Zachor, A.S., Sharma, R.D., Nadile, R.M., and Stair, A.T., Inversion of a spectrally resolved limb radiance profile for the NO fundamental band, J. Geophys. Res., 1985, vol. 90, no. A10, pp. 9776–9782.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Semenov
    • 1
  • I. V. Medvedeva
    • 2
  • V. I. Perminov
    • 1
  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Solar–Terrestrial Physics, Siberian DivisionRussian Academy of SciencesIrkutskRussia

Personalised recommendations