Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 2, pp 281–289 | Cite as

Propagation of Stationary Planetary Waves in the Upper Atmosphere under Different Solar Activity

  • A. V. Koval
  • N. M. Gavrilov
  • A. I. Pogoreltsev
  • N. O. Shevchuk
Article

Abstract

Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth’s surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January–February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen–Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, J.R., McCormack, J.P., and Nathan, T.R., Stratospheric ozone and the morphology of the northern hemisphere planetary waveguide, J. Geophys. Res.: Atmos., 2013, vol. 118, pp. 563–576. doi 10.1029/2012JD017937CrossRefGoogle Scholar
  2. Andrews, D.G., Holton, J.R., and Leovy, C.B., Middle Atmosphere Dynamics, New York: Academic, 1987.Google Scholar
  3. Arnold, N.F. and Robinson, T.R., Solar cycle changes to planetary wave propagation and their influence on the middle atmosphere circulation, Ann. Geophys., 1998, vol. 16, no. 1, pp. 69–76.CrossRefGoogle Scholar
  4. Bruevich, E.A. and Yakunina, G.V., The cyclic activity of the Sun from observations of the activity indices at different time scales, Moscow Univ. Phys. Bull., 2015, vol. 70, no. 4, pp. 282–290. doi 10.3103/S0027134915040062CrossRefGoogle Scholar
  5. Chanin, M.-L., Signature of the 11-year cycle in the upper atmosphere, Space Sci. Rev., 2006, vol. 125, pp. 261–272. doi 10.1007/s11214-006-9062-5CrossRefGoogle Scholar
  6. Charney, J.G. and Drazin, P.G., Propagation of planetaryscale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 1961, vol. 66, no. 1, pp. 83–109.CrossRefGoogle Scholar
  7. Dickinson, R.E., Planetary Rossby waves propagating vertically through weak westerly wave guides, J. Atmos. Sci., vol. 25, pp. 984–1002.Google Scholar
  8. Gavrilov, N.M., Koval, A.V., Pogoreltsev, A.I., and Savenkova, E.N., Numerical simulation of the response of general circulation of the middle atmosphere to spatial inhomogeneities of orographic waves, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 4, pp. 367–374.CrossRefGoogle Scholar
  9. Gavrilov, N.M., Koval, A.V., Pogoreltsev, A.I., and Savenkova, E.N., Numerical simulation of the influence of stationary mesoscale orographic waves on the meridional circulation and ozone fluxes in the middle atmosphere, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 3, pp. 381–387.CrossRefGoogle Scholar
  10. Gavrilov, N.M., Koval, A.V., Pogoreltsev, A.I., and Savenkova, E.N., Simulating influences of QBO phases and orographic gravity wave forcing on planetary waves in the middle atmosphere, Earth Planets Space, 2015, vol. 67, no. 1. doi 10.1186/s40623-015-0259-2Google Scholar
  11. Geller, M.A. and Alpert, J.C., Planetary wave coupling between the troposphere and the middle atmosphere as a possible Sun-weather mechanism, J. Atmos. Sci., 1980, vol. 37, pp. 1197–1215.CrossRefGoogle Scholar
  12. Gill, A., Atmosphere–Ocean Dynamics, New York: Academic, 1982; Moscow: Mir, 1986.Google Scholar
  13. Gurevich, A.V. and Tsedilina, E.E., Motion and spreading of inhomogeneities in a plasma, Phys.-Usp., 1967, vol. 10, pp. 214–236.Google Scholar
  14. Haynes, P.H., McIntyre, M.E., Shepherd, T.G., Marks, C.J., and Shine, K.P., On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces, J. Atmos. Sci., 1991, vol. 48, no. 4, pp. 651–678.CrossRefGoogle Scholar
  15. Holton, J.R., The Dynamic Meteorology of the Stratosphere and Mesosphere, Boston: Am. Meteorol. Soc., 1975.CrossRefGoogle Scholar
  16. Hoppner, K. and Bittner, M., Evidence for solar signals in the mesopause temperature variability?, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 431–448.CrossRefGoogle Scholar
  17. Jacobi, Ch., Hoffmann, P., and Kurschner, D., Trends in MLT region winds and planetary waves, Collm (52° N, 15° E), Ann. Geophys., 2008, vol. 26, no. 5, pp. 1221–1232.CrossRefGoogle Scholar
  18. Jacobi, Ch., Fröhlich, K., and Portnyagin, Y., et al., Semiempirical model of middle atmosphere wind from the ground to the lower thermosphere, Adv. Space Res., 2009, vol. 43, pp. 239–246.CrossRefGoogle Scholar
  19. Jarvis, M.J., Planetary wave trends in the lower thermosphere— Evidence for 22-year solar modulation of the quasi 5-day wave, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, no. 1, pp. 1902–1912.CrossRefGoogle Scholar
  20. Karoly, D.J. and Hoskins, B.J., Three dimensional propagation of planetary waves, J. Meteorol. Soc. Jpn., 1982, vol. 60, no. 1, pp. 109–123.CrossRefGoogle Scholar
  21. Kobayashi, S., Ota, Y., and Harada, H., The JRA-55 reanalysis: General specifications and basic characteristics, J. Meteorol. Soc. Jpn., 2015, vol. 93, no. 1, pp. 5–48. doi 10.2151/jmsj.2015-00CrossRefGoogle Scholar
  22. Koval, A.V., Gavrilov, N.M., Pogoreltsev, A.I., and Savenkova, E.N., Experiments on sensitivity of meridional circulation and ozone flux to parameterizations of orographic gravity waves and QBO phases in a general circulation model of the middle atmosphere, Geosci. Model Dev. Discuss., 2015, vol. 8, no. 7, pp. 5643–5670. doi 10.5194/gmdd-8-5643-201CrossRefGoogle Scholar
  23. Krivolutsky, A.A., Cherepanova, L.A., Dement’eva, A.V., Repnev, A.I., and Klyuchnikova, A.V., Global circulation of the Earth’s atmosphere at altitudes from 0 to 135 km simulated with the ARM model. Consideration of the solar activity contribution, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 6, pp. 780–800.CrossRefGoogle Scholar
  24. Labitzke, K. and van Loon, H., Association between the 11-year solar cycle, the QBO, and the atmosphere. Part II: Surface and 700 mb in the northern hemisphere in winter, J. Clim., 1988, vol. 1, no. 9, pp. 905–920.CrossRefGoogle Scholar
  25. Lu, H., Scaife, A.A., Marshall, G.J., Turner, J., and Gray, L.J., Downward wave reflection as a mechanism for the stratosphere–troposphere response to the 11-year solar cycle, J. Clim., 2017, vol. 30, no. 7, pp. 2395–2414.CrossRefGoogle Scholar
  26. Matsuno, T., Vertical propagation of stationary planetary waves in the winter Northern Hemisphere, J. Atmos. Sci., 1970, vol. 27, no. 6, pp. 871–883.CrossRefGoogle Scholar
  27. Pogoreltsev, A.I., Simulation of the influence of stationary planetary waves on the zonally averaged circulation of the mesosphere/lower thermosphere region, J. Atmos. Terr. Phys., 1996, vol. 58, no. 10, pp. 1125–1141.CrossRefGoogle Scholar
  28. Pogoreltsev, A.I., Vlasov, A.A., Froehlich, K., and Jacobi, Ch., Planetary waves in coupling the lower and upper atmosphere, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, no. 1, pp. 2083–2101.CrossRefGoogle Scholar
  29. Pudovkin, M.I. and Veretenenko, S.V., Cloudiness decreases associated with Forbush decreases of galactic cosmic rays, J. Atmos. Sol.-Terr. Phys., 1995, vol. 57, no. 11, pp. 1349–1355.CrossRefGoogle Scholar
  30. Royal Observatory of Belgium (ROB), http://sidc.be/silso/datafiles.Google Scholar
  31. Shevchuk, N.O. and Pogoreltsev, A.I., Upper atmosphere conductivity model and conductivities effects on modeling of atmospheric tides, in Proc. Int. Conf. “Atmosphere, Ionosphere, Safety” (AIS-2016), Kaliningrad, 2016, p. 500.Google Scholar
  32. Swinbank, R. and O’Neill, A., Stratosphere–troposphere assimilation system, Mon. Weather Rev., 1994, vol. 122, pp. 686–702.CrossRefGoogle Scholar
  33. Vitinskii, Yu. I., Kopetskii, M., and Kuklin, G.V., Statistika pyatnoobrazovatel’noi deyatel’nosti Solntsa (Statistics of Solar Spot Generation Activity), Moscow: Nauka, 1986.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Koval
    • 1
  • N. M. Gavrilov
    • 1
  • A. I. Pogoreltsev
    • 1
    • 2
  • N. O. Shevchuk
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Russian State Hydrometeorological UniversitySt. PetersburgRussia

Personalised recommendations