Geomagnetism and Aeronomy

, Volume 58, Issue 1, pp 127–134 | Cite as

Spectral Structure of Temperature Variations in the Midlatitude Mesopause Region

  • V. I. Perminov
  • A. I. Semenov
  • I. V. Medvedeva
  • N. N. Pertsev
  • V. A. Sukhodoev


Long-term series of midnight temperature in the mesopause region have been obtained from spectral observations of hydroxyl airglow emission (OH(6-2) λ840 nm band) at the Tory station (52° N, 103° E) in 2008–2016 and Zvenigorod (56° N, 37° E) station in 2000–2016. On their basis, the Lomb-Scargle spectra of the variations in the period range from ~12 days to ~11 years have been determined. Estimates of the amplitudes of statistically significant temperature fluctuations are made. The dominant oscillations are the first and second harmonics of the annual variation, the amplitudes of which are 23–24 K and 4–7 K, respectively. The remaining variations, the number of which was 16 for the Tory and 22 for Zvenigorod stations, have small amplitudes (0.5–3 K). Oscillations with combinational frequencies, which arise from modulation of the annual variation harmonics, are observed in a structure of the variation spectra in addition to interannual oscillations (periods from ~2 to ~11 years) and harmonics of the annual variation (up to its tenth harmonic).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, D.J. and Stair, A.T., Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scr., 1988, no. 37, pp. 611–622.CrossRefGoogle Scholar
  2. Dick, K.A., On the rotational temperature of the airglow hydroxyl emissions, Planet. Space Sci., 1977, vol. 25, no. 6, pp. 595–596.CrossRefGoogle Scholar
  3. Espy, P.J. and Stegman, J., Trends and variability of mesospheric temperature at high-latitudes, Phys. Chem. Earth, 2002, vol. 27, pp. 543–553.CrossRefGoogle Scholar
  4. Fishkova, L.M., Nochnoe izluchenie sredneshirotnoi verkhnei atmosfery Zemli (Night Airglow of the Earth’s Midlatitude Upper Atmosphere), Tbilisi: Metsniereba, 1983.Google Scholar
  5. Höppner, K. and Bittner, M., Evidence for solar signals in the mesopause temperature variability?, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 431–448.CrossRefGoogle Scholar
  6. Krassovsky, V.I., Potapov, B.P., Semenov, A.I., Shagaev, M.V., Shefov, N.N., and Sobolev, V.G., On the equilibrium nature of the rotational temperature of hydroxyl airglow, Planet. Space Sci., 1977, vol. 25, no. 6, pp. 596–597.CrossRefGoogle Scholar
  7. Lomb, N.R., Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 1976, vol. 39, no. 2, pp. 447–462.CrossRefGoogle Scholar
  8. Marsh, D., Mills, M.J., Kinnison, D.E., Lamarque, J.-F., Calvo, N., and Polvani, L.M., Climate change from 1850 to 2005 simulated in CESM1(WACCM), J. Clim., 2013, vol. 26, pp. 7372–7391.CrossRefGoogle Scholar
  9. Offermann, D., Goussev, O., Kalicinsky, Ch., Koppmann, R., Matthes, K., Schmidt, H., Steinbrecht, W., and Wintel, J., A case study of multi-annual temperature oscillations in the atmosphere: Middle Europe, J. Atmos. Solar-Terr. Phys., 2015, vol. 135, pp. 1–11.CrossRefGoogle Scholar
  10. Perminov, V.I., Semenov, A.I., and Shefov, N.N., On rotational temperature of the hydroxyl emission, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 6, pp. 756–763.CrossRefGoogle Scholar
  11. Perminov, V.I., Semenov, A.I., Medvedeva, I.V., and Pertsev, N.N., Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 2, pp. 230–239.CrossRefGoogle Scholar
  12. Pertsev, N. and Perminov, V., Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1049–1056.CrossRefGoogle Scholar
  13. Reid, I.M., Spargo, A.J., and Woithe, J.M., Seasonal variations of the nighttime O(1S) and OH(8-3) airglow intensity at Adelaide, Australia, J. Geophys. Res. Atmos., 2014, vol. 119, no. 11, pp. 6991–7013.CrossRefGoogle Scholar
  14. Remsberg, E.E., Marshall, B.T., Garcia-Comas, M., et al., Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res., 2008, vol. 113, D17101. doi 10.1029/2008jd010013Google Scholar
  15. Scargle, J.D., Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 1982, vol. 263, pp. 835–853.CrossRefGoogle Scholar
  16. Schmidt, H., Brasseur, G.P., Charron, M., Manzini, E., Giorgetta, M.A., Dieh, T., Fomichev, V.I., Kinnison, D., Marsh, D., and Walters, S., The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling, J. Clim., 2006, vol. 19, pp. 3903–3931.CrossRefGoogle Scholar
  17. Semenov, A.I. and Shefov, N.N., An empirical model for the variations in the hydroxyl emission, Geomagn. Aeron. (Engl. Transl.), 1996, vol. 36, no. 4, pp. 468–480.Google Scholar
  18. Semenov, A.I., Bakanas, V.V., Perminov, V.I., Zheleznov, Yu.A., and Khomich, V.Yu., The near infrared spectrum of the emission of the nighttime upper atmosphere of the Earth, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 3, pp. 390–397.Google Scholar
  19. Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie verkhnei atmosfery–indikator ee struktury i dinamiki (Airglow as an Indicator of Upper Atmospheric Structure and Dynamics), Moscow: GEOS, 2006.Google Scholar
  20. Shepherd, M.G., Evans, W.F.J., Hernandez, G., Offermann, D., and Takahashi, H., Global variability of mesospheric temperature: Mean temperature field, J. Geophys. Res., 2004, vol. 109, D24117. doi 10.1029/2004JD005054Google Scholar
  21. Sidorenkov, N.S., The Interaction between Earth’s Rotation and Geophysical Processes, Weinheim: Wiley, 2009.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Perminov
    • 1
  • A. I. Semenov
    • 1
  • I. V. Medvedeva
    • 2
  • N. N. Pertsev
    • 1
  • V. A. Sukhodoev
    • 1
  1. 1.A. M. Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Solar–Terrestrial PhysicsSiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations