Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 1, pp 98–105 | Cite as

Viscosity Coefficient of the Multicomponent Neutral Atmosphere

  • A. V. Pavlov
Article
  • 12 Downloads

Abstract

The viscosity coefficient of the multicomponent neutral atmosphere calculated from the general hydrodynamic expression of a multicomponent gas mixture is compared with the approximations published and proposed in this paper for this coefficient. Two new approximate expressions for the viscosity coefficient of the multicomponent atmosphere have been found. Their relative calculation errors do not exceed 3.4 and 4.8% in the altitude range of 100 to 500 km for low, moderate, and high solar activity during daytime and nigthtime geomagnetically quiet and geomagnetically disturbed conditions at low, middle, and high latitudes. These errors are significantly smaller than the maximum relative errors (11.8–15.1%) of the viscosity coefficient calculations based on the approximations used in atmospheric studies for this coefficient. The new approximate expressions for the viscosity coefficient of the multicomponent atmosphere are recommended to be used in atmospheric studies to reduce errors in calculating atmospheric parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasofu, S.I. and Chapman, S., Solar–Terrestrial Physics, London: Oxford University Press, 1972; Moscow: Mir, 1975.Google Scholar
  2. Banks, P.M. and Kockarts, G., Aeronomy (Part B), New York: Academic, 1973.Google Scholar
  3. Brasseur, G.P. and Solomon, S., Aeronomy of the Middle Atmosphere. Chemistry and Physics of Stratosphere and Mesosphere, Dordrecht: Springer, 2005.Google Scholar
  4. Brunetti, B., Liuti, G., Luzzatti, E., Pirani, F., and Vecchiocattivi, F., Study of the interactions of atomic and molecular oxygen with O2 and N2 by scattering data, J. Chem. Phys., 1981, vol. 74, no. 12, pp. 6734–6741.CrossRefGoogle Scholar
  5. Capitelli, M., Gorse, C., Longo, S., and Giordano, D., Collision integrals of high-temperature air species, J. Thermophys. Heat Transfer, 2000, vol. 14, no. 2, pp. 259–268.CrossRefGoogle Scholar
  6. Childs, G.E. and Hanley, H.J.M., The viscosity and thermal conductivity coefficients of dilute nitrogen and oxygen, National Bureau of Standards, Technical Note 350, Boulder: Institute for Materials Research of National Bureau of Standards, 1966.Google Scholar
  7. Dalgarno, A. and Smith, F.J., Thermal conductivity and viscosity of atomic oxygen, Planet. Space Sci., 1962, vol. 9, nos. 1–2, pp. 1–2.CrossRefGoogle Scholar
  8. Ding, F., Wan, W., Yuan, H., The influence of background winds and attenuation on the propagation of atmospheric gravity waves, J. Atmos. Sol.-Terr. Phys., 2003, vol. 65, no. 7, pp. 857–869.CrossRefGoogle Scholar
  9. Ferziger, G. and Kaper, G., Mathematical Theory of Transport Processes in Gases, Amsterdam: North-Holland, 1972; Moscow: Mir, 1976.Google Scholar
  10. Fuller-Rowell, T.J., A two-dimensional, high-resolution, nested-grid model of the thermosphere. I. Neutral response to an electric field ‘spike’, J. Geophys. Res., 1984, vol. 89, no. 5, pp. 2971–2990.CrossRefGoogle Scholar
  11. Gershman, B.N., Dinamika ionosfernoi plazmy (Ionospheric Plasma Dynamics), Moscow: Nauka, 1974.Google Scholar
  12. Hanley, H.J.M. and Childs, G.E., Discrepancies between viscosity data for simple gases, Science, 1968, vol. 159, no. 3819, pp. 1114–1117. doi 10.1126/science.159.3819.1114CrossRefGoogle Scholar
  13. Hernandez, G. and Roble, R.G., Direct measurements of nighttime thermospheric winds and temperatures, 1. Seasonal variations during geomagnetic quiet periods, J. Geophys. Res., 1976, vol. 81, no. 13, pp. 2065–2074.CrossRefGoogle Scholar
  14. Jasper, A.W., Kamarchik, E., Miller, JA., and Klippenstein, S.J., First-principles binary diffusion coefficients for H, H2, and four normal alkanes + N2, J. Chem. Phys., 2014, vol. 141, no. 12, 124313. doi 10.1063/1.4896368CrossRefGoogle Scholar
  15. Kelley, M.C., The Earth’s Ionosphere: Plasma Physics and Electrodynamics, Amsterdam: Academic, 2009.Google Scholar
  16. Kestin, J., Viscosity of gases, in American Institute of Physics Handbook, Lindsay, R.B., Ed., New York: McGraw Hill, 1957, pp. 201–210.Google Scholar
  17. Kim, S.U. and Monroe, C.W., High-accuracy calculations of sixteen collision integrals for Lennard–Jones (12–6) gases and their interpolation to parameterize neon, argon, and krypton, J. Comput. Phys., 2014, vol. 273, pp. 358–373. doi 10.1016/j.jcp.2014.05.018CrossRefGoogle Scholar
  18. Lemmon, E.W. and Jacobsen, R.T., Viscosity and thermal conductivity equations for Nitrogen, Oxygen, Argon, and Air, Int. J. Thermophys., 2004, vol. 25, no. 1, pp. 21–69.CrossRefGoogle Scholar
  19. Levin, E., Partridge, H., and Stallcop, J.R., Collision integrals and high temperature transport properties for N–N, O–O, and N–O, J. Thermophys., 1990, vol. 4, no. 4, pp. 469–477.CrossRefGoogle Scholar
  20. Liner, J.C. and Weissman, S., Determination of the temperature dependence of gaseous diffusion coefficients using gas chromatographic apparatus, J. Chem. Phys., 1972, vol. 56, no. 5, pp. 2288–2290. doi 10.1063/1.1677533CrossRefGoogle Scholar
  21. Maitland, G.C. and Smith, E.B., Critical reassessment of viscosities of 11 common gases, J. Chem. Eng. Data, 1972, vol. 17, no. 2, pp. 150–156.CrossRefGoogle Scholar
  22. Mason, E.A. and Marrero, T.H., The diffusion of atoms and molecules, in Advances in Atomic and Molecular Physics, New York: Academic, 1970, vol. 6, pp. 155–233.CrossRefGoogle Scholar
  23. Matthews, G.P., Thomas, C.M.S.R., Dufty, A.N., and Smith, E.B., Viscosities of oxygen and air over a wide range of temperatures, J. Chem. Faraday Trans., 1976, vol. 72, no. 2, pp. 238–244. doi 10.1039/F19767200238CrossRefGoogle Scholar
  24. Partridge, H., Stallcop, J.R., and Levin, E., Potential energy curves and transport properties for the interaction of He with other ground-state atoms, J. Chem. Phys., 2001, vol. 115, no. 14, pp. 6471–6488.CrossRefGoogle Scholar
  25. Paul, P. and Warnatz, J., A re-evaluation of the means used to calculate transport properties of reacting flows, in Symposium (International) on Combustion, 1998, vol. 27, no. 1, pp. 495–504.CrossRefGoogle Scholar
  26. Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 2002, vol. 107, no. 12, 1468. doi 10.1029/2002JA009430Google Scholar
  27. Rees, M.H., Physics and Chemistry of the Upper Atmosphere. Cambridge, UK: Cambridge University Press, 1989.CrossRefGoogle Scholar
  28. Rishbeth, H., Thermospheric winds and the F-region: A review, J. Atmos. Terr. Phys., 1972, vol. 34, no. 1, pp. 1–47.CrossRefGoogle Scholar
  29. Schunk, R.W., Transport equations for aeronomy, Planet. Space Sci., 1975, vol. 23, no. 3, pp. 437–461.CrossRefGoogle Scholar
  30. Schunk, R.W., Mathematical structure of transport equations for multispecies flows, Rev. Geophys.: Space Phys., 1992, vol. 97, no. 5, pp. 3431–3426.Google Scholar
  31. Stallcop, J.R. and Partridge, H., Effective potential energies and transport cross sections for atom–molecule interactions of nitrogen and oxygen, Phys. Rev. A, 2001, vol. 64, no. 4, pp. 1–12. doi 10.1103/PhysRevA.64.042722CrossRefGoogle Scholar
  32. Stallcop, J.R., Partridge, H.J., Walch, S.P., and Levin, E., H–N2 interaction energies, transport cross sections, and collision integrals, J. Chem. Phys., 1992, vol. 97, no. 5, pp. 3431–3436.Google Scholar
  33. Stallcop, J.R., Levin, E., and Partridge, H., Transport properties of hydrogen, J. Thermophys. Heat Transfer, 1998, vol. 12, no. 4, pp. 514–519.CrossRefGoogle Scholar
  34. St.-Maurice, J.-P. and Schunk, R.W., Ion–neutral momentum coupling near discrete high-latitude ionospheric features, J. Geophys. Res., 1981, vol. 86, no. 13, pp. 11299–11321. doi 10.1029/JA086iA13p11299CrossRefGoogle Scholar
  35. Trautz, M. and Melster, A., Die Reibung, Wärmeleitung und Diffusion in Gasmischungen XI.Die Reibung von H2, N2, CO, C2H4, O2 und ihren binären Gemischen, Ann. Phys., 1930, vol. 399, no. 4, pp. 409–426.CrossRefGoogle Scholar
  36. Wassiljewa, A., Wärmeleitung in Gasgemischen, Phys. Z., 1904, vol. 5, no. 22, pp. 737–742.Google Scholar
  37. Weaver, A.B. and Alexeenko, A.A., Revised variable soft sphere and Lennard–Jones model parameters for eight common gases up to 2200 K, J. Phys. Chem. Ref. Data, 2015, vol. 44, no. 2, 023103. doi 10.1063/1.4921245CrossRefGoogle Scholar
  38. Wilke, C.R., A viscosity equation for gas mixtures, J. Chem. Phys., 1950, vol. 18, no. 4, pp. 517–519.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Terrestrial Magnetism, Ionosphere and Radio Wave PropagationRussian Academy of SciencesTroitskRussia

Personalised recommendations