Geomagnetism and Aeronomy

, Volume 58, Issue 1, pp 62–69 | Cite as

Winter Anomaly in the Critical Frequency of the E-Layer in the Nighttime Polar Cap

  • M. G. Deminov
  • G. F. Deminova


With the medians of the E-layer critical frequency foE measured at Resolute Bay and Casey ionospheric stations located in the polar caps of the Northern and Southern Hemispheres, it is found that these medians are higher at the nighttime hours (2100–0300 LT) in the local winter than in local summer. For Resolute Bay station, which is located above the Arctic Circle, the latter means that the foE median is higher at polar night than at polar day. Thus, the effect of a winter anomaly in the foE median in the nighttime polar cap is detected. The amplitude of that anomaly (the ratio of the local winter foE values to local summer values) could reach 15–20% and 10–15% for Resolute Bay and Casey stations, respectively. It is assumed that the winter anomaly in the foE median in the nighttime polar cap is caused by the winter–summer asymmetry in the accelerated electron energy fluxes precipitating into this region.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bilitza, D., The international reference ionosphere—status 2013, Adv. Space Res., 2015, vol. 55, no. 8, pp. 1914–1927.CrossRefGoogle Scholar
  2. Brunelly, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.Google Scholar
  3. Cattell, C., Dombeck, J., and Hanson, L., Solar cycle effects on parallel electric field acceleration of auroral electron beams, J. Geophys. Res.: Space, 2013, vol. 118, pp. 5673–5680. doi 10.1002/jgra.50546CrossRefGoogle Scholar
  4. Deminov, M.G. and Deminova, G.F., Winter anomaly of the E-Layer critical frequency in the nighttime auroral zone, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 5, pp. 584–590.CrossRefGoogle Scholar
  5. Gussenhoven, M.S. and Madden, D., Monitoring the polar rain over a solar cycle: A polar rain index, J. Geophys. Res., 1990, vol. 94, no. 7, pp. 10399–10416.CrossRefGoogle Scholar
  6. Gussenhoven, M.S., Hardy, D.A., Heinemann, N., and Burkhardt, R.K., Morphology of the polar rain, J. Geophys. Res., 1984, vol. 89, no. 11, pp. 9785–9800.CrossRefGoogle Scholar
  7. Hunsucker, R.D. and Hargreaves, J.K., The High-Latitude Ionosphere and Its Effects on Radio Propagation, Cambridge: Cambridge University Press, 2003.Google Scholar
  8. Johnson, M.T. and Wygant, J.R., The correlation of plasma density distributions over 5000 km with solar illumination of the ionosphere: Solar cycle and zenith angle observations, Geophys. Res. Lett., 2003, vol. 30, no. 24, 2260. doi 10.1029/2003GL018175CrossRefGoogle Scholar
  9. Johnson, M.T., Wygant, J.R., Cattell, C.A., and Mozer, F.S., Seasonal variations along auroral field lines: Measurements from the polar spacecraft, Geophys. Res. Lett., 2003, vol. 30, no. 6, 1344. doi 10.1029/2002GL015866CrossRefGoogle Scholar
  10. Korth, H., Zhang, Y., Anderson, B.J., Sotirelis, T., and Waters, C.L., Statistical relationship between largescale upward field-aligned currents and electron precipitation, J. Geophys. Res.: Space, 2014, vol. 119, no. 8, pp. 6715–6731. doi 10.1002/2014JA019961CrossRefGoogle Scholar
  11. Lions, L.R. and Williams, D.J., Quantitative Aspects of Magnetospheric Physics, Dordrecht: D. Reidel, 1984; Moscow: Mir, 1987.CrossRefGoogle Scholar
  12. Meng, C.-I., Polar cap arcs and the plasma sheet, Geophys. Res. Lett., 1981, vol. 8, no. 3, pp. 273–276.CrossRefGoogle Scholar
  13. Morooka, M. and Mukai, T., Density as a controlling factor for seasonal and altitudinal variations of the auroral particle acceleration region, J. Geophys. Res., 2003, vol. 108, no. A7, 1306. doi 10.1029/2002JA009786CrossRefGoogle Scholar
  14. Nava, B., Coisson, P., and Radicella, S.M., A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, no. 15, pp. 1856–1862.CrossRefGoogle Scholar
  15. Newell, P.T., Meng, C.-I., and Lyons, K.M., Suppression of discrete aurorae by sunlight, Nature, 1996, vol. 381, no. 6585, pp. 766–767.CrossRefGoogle Scholar
  16. Newell, P.T., Greenwald, R.A., and Ruohoniemi, J.M., The role of the ionosphere in aurora and space weather, Rev. Geophys., 2001, vol. 39, no. 2, pp. 137–149.CrossRefGoogle Scholar
  17. Newell, P.T., Sotirelis, T., and Wing, S., Diffuse, monoenergetic, and broadband aurora: The global precipitation budget, J. Geophys. Res., 2009, vol. 114, A09207. doi 10.1029/2009JA014326CrossRefGoogle Scholar
  18. Newell, P.T., Sotirelis, T., and Wing, S., Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res., 2010, vol. 115, A03216. doi 10.1029/2009JA014805Google Scholar
  19. Ohtani, S., Wing, S., Ueno, G., and Higuchi, T., Dependence of premidnight field-aligned currents and particle precipitation on solar illumination, J. Geophys. Res., 2009, vol. 114, A12205. doi 10.1029/JA014115CrossRefGoogle Scholar
  20. Perry, G.W., Dahlgren, H., Nicolls, M.J., and Zettergren, M., St.-Maurice, J.-P., Semeter, J.L., Sundberg, T., Hosokawa, K., Shiokawa, K., and Chen, S., Spatiotemporally resolved electrodynamic properties of a Sun-aligned arc over Resolute Bay, J. Geophys. Res.: Space, 2015, vol. 120, pp. 9977–9987. doi 10.1002/2015JA021790CrossRefGoogle Scholar
  21. Ramachandran, K.M. and Tsokos, C.P., Mathematical Statistics with Applications, Oxford: Elsevier, 2009.Google Scholar
  22. Schunk, R.W. and Nagy, A.E., Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge: Cambridge University Press, 2009.Google Scholar
  23. Titheridge, J.E., Re-modeling the ionospheric E region, Kleinheubacher Ber., 1996, vol. 39, pp. 687–696.Google Scholar
  24. Troshichev, O., Hayakawa, H., Matsuoka, A., Mukai, T., and Tsuruda, K., Cross polar cap diameter and voltage as a function of PCindex and interplanetary quantities, J. Geophys. Res., 1996, vol. 101, no. 6, pp. 13429–13435.CrossRefGoogle Scholar
  25. Wiltberger, M., Rigler, E.J., Merkin, V., and Lyon, J.G., Structure of high latitude currents in magnetosphere–ionosphere models, Space Sci. Rev., 2017, vol. 206, no. 1, pp. 575–598. doi 10.1007/s11214-016-0271-2CrossRefGoogle Scholar
  26. Wing, S., Fairfield, D.H., Johnson, J.R., and Ohtani, S.-I., On the field-aligned electric field in the polar cap, Geophys. Res. Lett., 2015, vol. 42, pp. 5090–5099. doi 10.1002/2015GL064229CrossRefGoogle Scholar
  27. Xiong, C. and Lühr, H., An empirical model of the auroral oval derived from CHAMP field-aligned current signatures— Part 2, Ann. Geophys., 2014, vol. 32, no. 6, pp. 623–631.CrossRefGoogle Scholar
  28. Xiong, C., Lühr, H., Wang, H., and Johnsen, M.G., Determining the boundaries of the auroral oval from CHAMP field-aligned current signatures—Part 1, Ann. Geophys., 2014, vol. 32, no. 6, pp. 609–622.CrossRefGoogle Scholar
  29. Yang, Z., Ssessanga, N., Tran, L.T., Bilitza, D., and Kenpankho, P., On improvement in representation of foE in IRI, Adv. Space Res., 2017, vol. 60, no. 2, pp. 347–356. Scholar
  30. Zhang, Y., Paxton, L.J., Zhang, Q., and Xing, Z., Polar cap arcs: Sun-aligned or cusp-aligned?, J. Atmos. Sol.-Terr. Phys., 2016, vol. 146, pp. 123–128.CrossRefGoogle Scholar
  31. Zhu, L., Schunk, R.W., and Sojka, J.J., Polar cap arcs: A review, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, no. 10, pp. 1087–1126.CrossRefGoogle Scholar
  32. Zou, Y., Nishimura, Y., Lyons, L.R., Donovan, E.F., Shiokawa, K., Ruohoniemi, J.M., McWilliams, K.A., and Nishitani, N., Polar cap precursor of nightside auroral oval intensifications using polar cap arcs, J. Geophys. Res.: Space, 2015, vol. 120, pp. 10698–10711. doi 10.1002/2015JA021816CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Terrestrial Magnetism, Ionosphere, and Radiowave PropagationTroitsk, MoscowRussia

Personalised recommendations