Geomagnetism and Aeronomy

, Volume 58, Issue 1, pp 50–61 | Cite as

Heating of Ions by Small-Scale Electric Field Inhomogeneities in the Auroral Ionosphere During Geomagnetic Disturbances

  • D. V. Chugunin
  • M. V. Klimenko
  • A. A. Chernyshov
  • V. V. Klimenko
  • A. A. Il’yasov
  • R. Yu. Luk’yanova


In this paper, measurements of thermal and superthermal ions on the Interball-2 satellite are compared with the results of numerical simulation based on geomagnetic disturbances on December 7, 1996. It is shown that kinetic processes at small scales can have a significant effect on large-scale processes in high latitudes, leading to heating and the formation of ion fluxes and also to the formation of regions with an increased plasma density. Based on the analysis, the mechanisms that should be included in the large-scale ionosphere–magnetosphere models for the adequate description of the ion outflow from the ionosphere to the magnetosphere are determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., Yau, A.W., Watanabe, S., Yamada, M., and Sagawa, E., Long-term variation of the polar wind velocity and its implication for the ion acceleration process: Akebono/suprathermal ion mass spectrometer observations, J. Geophys. Res., 2004, vol. 109, A09305. doi 10.1029/2003JA010223CrossRefGoogle Scholar
  2. Amatucci, W.E., Walker, D.N., Ganguli, G., Duncan, D., Antoniades, J.A., Bowles, J.H., Gavrishchaka, V., and Koepke, M.E., Velocity-shear-driven ion-cyclotron waves and associated transverse ion heating, J. Geophys. Res., 1998, vol. 103, pp. 11711–11724. doi 10.1029/98JA00659CrossRefGoogle Scholar
  3. André, M., Norqvist, P., Andersson, L., Eliasson, L., Eriksson, A.I., Blomberg, L., Erlandson, R., and Waldemark, J., Ion energization mechanisms at 1700 km in the auroral region, J. Geophys. Res., 1998, vol. 103, pp. 4199–4222. doi 10.1029/97JA00855CrossRefGoogle Scholar
  4. Bekerat, H.A., Schunk, R.W., and Scherliess, L., Estimation of the high-latitude topside electron heat flux using DMSP plasma density measurements, J. Atmos. Solar.-Terr. Phys, 2007, vol. 69, pp. 1029–1048. doi 10.1016/j.jastp.2007.03.015CrossRefGoogle Scholar
  5. Bessarab, F.S., Korenkov, Yu.N., Klimenko, V.V., Klimenko, M.V., and Zhang, Y., E-region ionospheric storm on May 1–3, 2010: GSM TIP model representation and suggestions for IRI improvement, Adv. Space Res., 2015, vol. 55, no. 8, pp. 2124–2130. doi 10.1016/j.asr.2014.08.003CrossRefGoogle Scholar
  6. Cattell, C., Bergmann, R., Sigsbee, K., et al., The association of electrostatic ion cyclotron waves, ion and electron beams and field-aligned currents: Fast observations of an auroral zone crossing near midnight, Geophys. Res. Lett., 1998, vol. 25, no. 12, pp. 2053–2056.CrossRefGoogle Scholar
  7. Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone, Plasma Phys. Rep., 2015, vol. 41, no. 3, pp. 254–261.CrossRefGoogle Scholar
  8. Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Features of wave excitation of the electrostatic ion cyclotron type in the auroral ionosphere, Cosmic Res., 2016, vol. 54, no. 1, pp. 52–60.CrossRefGoogle Scholar
  9. Ergun, R., Carlson, C., McFadden, J., et al., Fast satellite observations of electric field structures in the auroral zone, Geophys. Res. Lett., 1998, vol. 25, pp. 2025–2028.CrossRefGoogle Scholar
  10. Galeev, A.A., Galperin, Yu.I., and Zelenyi, L.M., The INTERBALL project to study solar–terrestrial physics, Cosmic Res., 1996, vol. 34, no. 4, pp. 313–332.Google Scholar
  11. Ganguli, G., Lee, Y.C., and Palmadesso, P.G., A new mechanism for excitation of electrostatic ion cyclotron waves and associated perpendicular ion heating, Geophys. Res. Lett., 1985, vol. 12, no. 10, pp. 643–646.CrossRefGoogle Scholar
  12. Ganguli, G., Keskinen, M.J., Romero, H., Heelis, R., Moore, T., and Pollock, C., Coupling of microprocesses and macroprocesses due to velocity shear: An application to the low-altitude ionosphere, J. Geophys. Res., 1994, vol. 99, pp. 8873–8889. doi 10.1029/93JA03181CrossRefGoogle Scholar
  13. Gavrishchaka, V., Koepke, M.E., and Ganguli, G., Dispersive properties of a magnetized plasma with a field-aligned drift and inhomogeneous transverse flow, Phys. Plasmas, 1996, vol. 3, pp. 3091–3106. doi 10.1063/1.871656CrossRefGoogle Scholar
  14. Glocer, A., Tóth, G., Gombosi, T., and Welling, D., Modeling ionospheric outflows and their impact on the magnetosphere, initial results, J. Geophys. Res., 2009, vol. 114, A05216. doi 10.1029/2009JA014053Google Scholar
  15. Golovchanskaya, I.V., Kozelov, B.V., Chernyshov, A.A., Mogilevsky, M.M., and Ilyasov, A.A., Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere, Phys. Plasmas, 2014, vol. 21, 082903. doi 10.1063/1.4891668Google Scholar
  16. Gombosi, T.I., Kerr, LK., Nagy, A.F., and Cannata, R.W., Helium in the polar wind, Adv. Space Res., 1991, vol. 12, no. 6, pp. 183–186.CrossRefGoogle Scholar
  17. Huddleston, M.M., Chappell, C.R., Delcourt, D.C., Moore, T.E., Giles, B.L., and Chandler, M.O., An examination of the process and magnitude of ionospheric plasma supply to the magnetosphere, J. Geophys. Res., 2005, vol. 110, A12202. doi 10.1029/2004JA010401CrossRefGoogle Scholar
  18. Ilyasov, A.A., Chernyshov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region, Phys. Plasmas, 2015, vol. 22, no. 3, 032906. doi 10.1063/1.4916125Google Scholar
  19. Kintner, P.M., Franz, J., Schuck, P., and Klatt, E., Interferometric coherency determination of wavelength or what are broadband ELF waves?, J. Geophys. Res., 2000, vol. 105, pp. 237–250. doi 10.1029/1999JA000323CrossRefGoogle Scholar
  20. Klimenko, M.V. and Klimenko, V.V., Mechanisms of stratification of the F2 layer and formation of the F3 and G layers in the equatorial ionosphere, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 3, pp. 321–334.CrossRefGoogle Scholar
  21. Klimenko, M.V., Klimenko, V.V., and Bryukhanov, V.V., Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: The dynamo field and equatorial electrojet, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 4, pp. 457–466.CrossRefGoogle Scholar
  22. Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P., Sahai, Y., Fagundes, P.R., de Jesus, R., de Abreu, A.J., and Vesnin, A.M., Numerical modeling of ionospheric effects in the middle- and low-latitude F region during geomagnetic storm sequence of 9–14 September 2005, Radio Sci., 2011, vol. 46, RS0D03. doi 10.1029/2010RS004590Google Scholar
  23. Klimenko, M.V., Klimenko, V.V., and Karpachev, A.T., Formation mechanism of additional layers above regular F2 layer in the near-equatorial ionosphere during quiet period, J. Atmos. Sol.-Terr. Phys., 2012, pp. 90–91. doi 10.1016/j.jastp.2012.02.011Google Scholar
  24. Klimenko, M.V., Klimenko, V.V., Karpachev, A.T., Ratovsky, K.G., and Stepanov, A.E., Spatial features of Weddell Sea and Yakutsk Anomalies in foF2 diurnal variations during high solar activity periods: Interkosmos-19 satellite and ground-based ionosonde observations, IRI reproduction and GSM TIP model simulation, Adv. Space Res., 2015a, vol. 55, no. 8, pp. 2020–2032. doi 10.1016/j.asr.2014.12.032CrossRefGoogle Scholar
  25. Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Zakharenkova, I.E., Yasyukevich, Yu.V., Korenkova, N.A., Cherniak, Iu.V., and Mylnikova, A.A., Mid-latitude Summer Evening Anomaly (MSEA) in F2 layer electron density and Total Electron Content at solar minimum, Adv. Space Res., 2015b, vol. 56, no. 9, pp. 1951–1960. doi 10.1016/j.asr.2015.07-019CrossRefGoogle Scholar
  26. Klimenko, M.V., Klimenko, V.V., Bessarab, F.S., Ratovsky, K.G., Zakharenkova, I.E., Nosikov, I. A., Stepanov, A.E., Kotova, D.S., Vorobjev V.G., and Yagodkina, O.I., Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HFradiowave propagation. I. Ionospheric effect, Geomagn. Aeron. (Engl. Transl.), 2015c, vol. 55, no. 5, pp. 744–762.CrossRefGoogle Scholar
  27. Koepke, M.E., Carroll, J.J., and Zintl, M.W., Laboratory simulation of broadband ELF waves in the auroral ionosphere, J. Geophys. Res., 1999, vol. 104, pp. 14397–14416.CrossRefGoogle Scholar
  28. Korenkov, Yu.N., Klimenko, V.V., Forster, M., Bessarab, F.S., and Surotkin, V.A., Calculated and observed ionospheric parameters for Magion-2 passage above EISCAT on July 31, 1990, J. Geophys. Res., 1998, vol. 103, no. 7, pp. 14697–14710. doi 10.1029/98JA00210CrossRefGoogle Scholar
  29. Lukianova, R.Yu. and Christiansen, F., Modeling of the global distribution of ionospheric electric field based on realistic maps of field-aligned currents, J. Geophys. Res., 2006, vol. 111, A03213. doi 10.1029/2005JA011465CrossRefGoogle Scholar
  30. Mogilevsky, M.M., Buabdellakh, A., de la Port, B., Aleksandrova, T.V., Romantsova, T.V., and Lefeuvre, F., Measurements of electromagnetic ULF fields onboard the Auroral Probe satellite: the IESP experiment, Cosmic. Res., 1999, vol. 37, no. 2, pp. 113–120.Google Scholar
  31. Moore, T.E., Superthermal ionospheric outflows, Rev. Geophys., 1984, vol. 22, pp. 264–274.CrossRefGoogle Scholar
  32. Moore, T.E., Chandler, M.O., Pollock, C.J., Reasoner, D.L., Arnoldy, R.L., Austin, B., Kintner, P.M., and Bonnell, J., Plasma heating and flow in an auroral arc, J. Geophys. Res., 1996, vol. 101, no. 3, pp. 5279–5297.CrossRefGoogle Scholar
  33. Moore, T.E., Fok, M.-C., Delcourt, D.C., Slinker, S.P., and Fedder, J.A., Global aspects of solar wind ionosphere interactions, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 265–278. doi 10.1016/j.jastp.2006.08.009CrossRefGoogle Scholar
  34. Namgaladze, A.A., Koren’kov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., Naumova, N.M., Global numerical model of the Earth’s thermosphere, ionosphere, and protonosphere, Geomagn. Aeron., 1990, vol. 30, no. 4, pp. 612–619.Google Scholar
  35. Nosé, M., McEntire, R.W., and Christon, S.P., Change of the plasma sheet ion composition during magnetic storm development observed by the Geotail spacecraft, J. Geophys. Res., 2003, vol. 108, no. A5, 1201. doi 10.1029/2002JA009660Google Scholar
  36. Palmadesso, P.J., Coffey, T.P., Ossakow, S.L., and Papadopoulos, K., Topside ionosphere ion heating due to electrostatic ion cyclotron turbulence, Geophys. Res. Lett., 1974, vol. 1, no. 3, pp. 105–108.CrossRefGoogle Scholar
  37. Pulkkinen, T.I., Ganushkina, N.Yu., Baker, D.N., Turner, N.E., Fennell, J.F., Roeder, J., Fritz, T.A., Grande, M., Kellett, B., and Kettman, G., Ring current ion composition during solar minimum and rising solar activity: Polar/CAMMICE/MICS results, J. Geophys. Res., 2001, vol. 106, pp. 19131–19147.CrossRefGoogle Scholar
  38. Ridley, A., Gombosi, T., and Dezeeuw, D., Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 2004, vol. 22, pp. 567–584.CrossRefGoogle Scholar
  39. Sauvaud, J.-A., Barthe, H., Aoustin, C., Thocaven, J.J., Penou, E., Rouzaud, J., Kovrazhkin, R.A., Afanasiev, K.G., and Ivanchenkova, I.Yu., Measurement of the suprathermal plasma by the ION spectrometric complex on the INTERBALL-2 satellite (Auroral Probe), Cosmic. Res., 1998, vol. 36, no. 1, pp. 59–67.Google Scholar
  40. Sharp, R.D., Lennartsson, W., and Strangeway, R.J., The ionospheric contribution to the plasma environment in near-Earth space, Radio Sci., 1985, vol. 20, pp. 456–462.CrossRefGoogle Scholar
  41. Shelley, E., Johnson, R., and Sharp, R., Satellite observations of energetic heavy ions during a geomagnetic storm, J. Geophys. Res., 1972, vol. 77, no. 31, pp. 6104–6110.CrossRefGoogle Scholar
  42. Stasiewicz, K., Bellan, P., Chaston, C., et al., Small scale Alfvénic structure in the aurora, Space Sci. Rev., 2000, vol. 92, pp. 423–533.CrossRefGoogle Scholar
  43. Suvorova, A.V., Huang, C.-M., Dmitriev, A.V., Kunitsyn, V.E., Andreeva, E.S., Nesterov, I.A., Klimenko, M.V., Klimenko, V.V., and Tumanova, Y.S., Effects of ionizing energetic electrons and plasma transport in the ionosphere during the initial phase of the December 2006 magnetic storm, J. Geophys. Res., 2016, vol. 121, no. 6, pp. 5880–5896. doi 10.1002/2016JA022622CrossRefGoogle Scholar
  44. Tóth, G., Sokolov, I.V., Gombosi, T.I., et al., Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 2005, vol. 110, A12226. doi 10.1029/2005JA011126CrossRefGoogle Scholar
  45. Tsunoda, R.T., Livingston, R.C., Vickrey, J.F., Heelis, R.A., Hanson, W.B., Rich, F.J., and Bythrow, P.F., Dayside observations of thermal-ion upwellings at 800-km altitude: An ionospheric signature of the cleft ion fountain, J. Geophys. Res., 1989, vol. 94, no. 11, pp. 15277–15290. doi 10.1029/JA094iA11p15277CrossRefGoogle Scholar
  46. Vorobjev, V.G. and Yagodkina, O.I., Empirical model of auroral precipitation power during substorms, J. Atmos. Sol.-Ter. Phys., 2008, vol. 70, pp. 654–662.CrossRefGoogle Scholar
  47. Wiltberger, M., Wang, W., Burns, A., Solomon, S., Lyon, J., and Goodrich, C., Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, pp. 1411–1423.CrossRefGoogle Scholar
  48. Winglee, R.M., Mapping of ionospheric outflows into the magnetosphere for varying IMF conditions, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, no. 6, pp. 527–540.CrossRefGoogle Scholar
  49. Winglee, R.M., Chua, D., Brittnacher, M., Parks, G., and Lu, G., Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross-polar cap potential, J. Geophys. Res., 2002, vol. 107, no. A9, 1237. doi 10.1029/2001JA000214CrossRefGoogle Scholar
  50. Zhang, Y. and Paxton, L.J., An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1231–1242.CrossRefGoogle Scholar
  51. Zinin, L.V., Grigoriev, S.A., Chugunin, D.V., Galperin, Yu.I., Lynovsky, V.E, Vasilenko, I.Yu., Latyshev, K.S., and Duboulouz, N., Multi-ion one-dimensional MHD models for the dynamics of the high latitude ionosphere: 2. Ion fountain in the cusp/cleft: comparison of the Tube-7 model with measurements by the HYPERBOLOID mass spectrometer onboard the Interball-2 satellite, Cosmic Res., 2000, vol. 38, no. 1, pp. 3–12.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. V. Chugunin
    • 1
  • M. V. Klimenko
    • 2
    • 3
  • A. A. Chernyshov
    • 1
  • V. V. Klimenko
    • 2
  • A. A. Il’yasov
    • 1
  • R. Yu. Luk’yanova
    • 1
    • 4
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Kaliningrad Branch, Institute of Terrestrial MagnetismIonosphere and Radio Wave PropagationKaliningradRussia
  3. 3.Baltic Federal UniversityKaliningradRussia
  4. 4.Geophysical CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations