Skip to main content
Log in

The role of solar activity in observed climate changes in the 20th century

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript


The possible contribution of solar and geomagnetic activity to changes in the characteristics of the main components of the climatic system—the ocean and the atmosphere—is considered and discussed. The mechanisms and models of the solar activity impact on thermobaric and climatic characteristics of the troposphere are presented. Based on a complex analysis of hydrometeorological data, it has been shown that changes in the temperature of the troposphere and the World Ocean reflect a response both to individual helio-geophysical perturbations and to long-term changes (1854–2015) of solar and geomagnetic activity. It is established that the climatic response to the influence of solar and geomagnetic activity is characterized by considerable spatio-temporal heterogeneity, is of a regional nature, and depends on the general circulation of the atmosphere. The largest contribution of solar activity to the global climate changes was observed in the period 1910–1943.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Alekseev, G.V., Ivanov, N.E., Pnyushkov, A.V., and Kharlanenkova, N.E., Climate changes in the marine Arctic in early 21st century, in Meteorologicheskie i geofizicheskie issledovaniya (Meteorological and Geophysical Studies), Moscow: Evropeiskie izdaniya, 2011, pp. 3–25.

    Google Scholar 

  • Avdyushin, S.I. and Danilov, A.D., The Sun, weather, and climate: A present-day view of the problem (review), Geomagn. Aeron. (Engl. Transl.), 2000, vol. 40, no. 5, pp. 545–555.

    Google Scholar 

  • Comiso, J.C., Parkinson, C.L., Gersten, R., and Stock, L., Accelerated decline in the arctic sea ice cover, Geophys. Res. Lett., 2008, vol. 35, L01703. doi 10.1029/2007GL031972

    Article  Google Scholar 

  • Dergachev, V.A. and Raspopov, O.M., Reconstruction of the Earth’s surface temperature based on data of deep boreholes, global warming in the last millennium, and long-term solar cyclicity. Part 1. Experimental data, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 3, pp. 383–392.

    Google Scholar 

  • Dickson, R.R., Meincke, J., Malmberg, S.A., and Lee, A.J., The “great salinity anomaly” in the Northern North Atlantic 1968–1982, Prog. Oceanogr., 1988, vol. 20, no. 2, pp. 103–151.

    Article  Google Scholar 

  • Eddy, J.A., The maunder minimum, Science, 1976, vol. 192, no. 4245, pp. 1189–1202.

    Article  Google Scholar 

  • Gray, L.J., Beer, J., Geller, M., et al., Solar influences on climate, Rev. Geophys., 2010, vol. 48, RG4001. doi 10.1029/2009RG000282

    Article  Google Scholar 

  • Hurrell, J.W., Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 1995, vol. 269, no. 5224, pp. 676–679.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., et al., The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 1996, vol. 77, no. 3, pp. 437–471.

    Article  Google Scholar 

  • Kernthaler, S.C., Toumi, R., and Haigh, J.D., Some doubts concerning a link between cosmic ray fluxes and global cloudiness, Geophys. Res. Lett., 1999, vol. 26, no. 7, pp. 863–865.

    Article  Google Scholar 

  • Krivolutsky, A.A., Cherepanova, L.A., and Dement’eva, A.V., Solar cycle influence on troposphere and middle atmosphere via ozone layer in the presence of planetary waves: Simulation with ARM, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 10, pp. 8298–8306.

    Article  Google Scholar 

  • Marsh, N. and Svensmark, H., Solar influence on Earth’s climate, Space Sci. Rev., 2003, vol. 107, no. 1, pp. 317–325.

    Article  Google Scholar 

  • McCormack, B., Seliga, T., and Roberts, W., Solar–Terrestrial Influences on Weather and Climate, Dordrecht: Springer, 1982; Moscow: Mir, 1982.

    Google Scholar 

  • Mitchel, D.M., Misios, S., Gray, L.J., Tourpali, K., Matthes, K., Hood, L., Schmidt, H., Chiodo, G., Thieblemont, R., Rozanov, E., Shindel, D., and Krivolutsky, A., Solar signals in CMIM-5 simulations: The stratospheric pathway, Q. J. R. Meteorol. Soc., 2015, vol. 141, no. 691, pp. 2390–2403.

    Article  Google Scholar 

  • Mokhov, I.I. and Smirnov, D.A., Diagnostics of a cause–effect relation between solar activity and the Earth’s global surface temperature, Izv.: Atmos. Ocean. Phys., 2008, vol. 44, no. 3, pp. 263–272.

    Google Scholar 

  • Mufti, S. and Shah, G.N., Solar–geomagnetic activity influence on Earth’s climate, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 13, pp. 1607–1615.

    Article  Google Scholar 

  • Mustel’, E.R., Mulyukova, N.B., and Chertoprud, V.E., On the solar–tropospheric effect in the Earth’s northern and southern hemispheres, Nauchnye Inform., 1990, no. 68, pp. 99–117.

    Google Scholar 

  • Roy, I. and Haigh, J.D., Solar cycle signals in sea level pressure and sea surface temperature, Atmos. Chem. Phys., 2010, vol. 10, no. 6, pp. 3147–3153.

    Article  Google Scholar 

  • Rubtsova, O.A., Kovalenko, V.A., and Molodykh, S.I., Manifestation of isolated heliogeophysical perturbations in the high-latitude troposphere, Opt. Atmos. Okeana, 2008, vol. 21, no. 6, pp. 463–466.

    Google Scholar 

  • Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press, 2013.

    Google Scholar 

  • Svensmark, H. and Friis-Christensen, E., Variations of cosmic ray flux and global cloud coverage: A missing link in solar–climate relationship, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, no. 11, pp. 1225–1232.

    Article  Google Scholar 

  • Valev, D., Statistical relationships between the surface air temperature anomalies and the solar and geomagnetic activity indices, Phys. Chem. Earth, 2006, vol. 31, nos. 1–3, pp. 109–112.

    Article  Google Scholar 

  • Zherebtsov, G.A., Kovalenko, V.A., and Molodykh, S.I., Radiation budget of the atmosphere and climatic manifestations of solar variations, Opt. Atmos. Okeana, 2004, vol. 17, no. 12, pp. 891–903.

    Google Scholar 

  • Zherebtsov, G.A., Kovalenko, V.A., Molodykh, S.I., and Rubtsova, O.A., Model of solar activity action on the climatic characteristics of the Earth’s troposphere, Opt. Atmos. Okeana, 2005a, vol. 18, no. 12, pp. 936–944.

    Google Scholar 

  • Zherebtsov, G.A., Kovalenko, V.A., and Molodykh, S.I., The physical mechanism of the solar variability influence on electrical and climatic characteristics of the troposphere, Adv. Space Res., 2005b, vol. 35, no. 8, pp. 1472–1479.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. A. Kovalenko.

Additional information

Original Russian Text © G.A. Zherebtsov, V.A. Kovalenko, K.E. Kirichenko, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 6, pp. 687–695.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zherebtsov, G.A., Kovalenko, V.A. & Kirichenko, K.E. The role of solar activity in observed climate changes in the 20th century. Geomagn. Aeron. 57, 637–644 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: