The role of solar activity in observed climate changes in the 20th century

Abstract

The possible contribution of solar and geomagnetic activity to changes in the characteristics of the main components of the climatic system—the ocean and the atmosphere—is considered and discussed. The mechanisms and models of the solar activity impact on thermobaric and climatic characteristics of the troposphere are presented. Based on a complex analysis of hydrometeorological data, it has been shown that changes in the temperature of the troposphere and the World Ocean reflect a response both to individual helio-geophysical perturbations and to long-term changes (1854–2015) of solar and geomagnetic activity. It is established that the climatic response to the influence of solar and geomagnetic activity is characterized by considerable spatio-temporal heterogeneity, is of a regional nature, and depends on the general circulation of the atmosphere. The largest contribution of solar activity to the global climate changes was observed in the period 1910–1943.

This is a preview of subscription content, log in to check access.

References

  1. Alekseev, G.V., Ivanov, N.E., Pnyushkov, A.V., and Kharlanenkova, N.E., Climate changes in the marine Arctic in early 21st century, in Meteorologicheskie i geofizicheskie issledovaniya (Meteorological and Geophysical Studies), Moscow: Evropeiskie izdaniya, 2011, pp. 3–25.

    Google Scholar 

  2. Avdyushin, S.I. and Danilov, A.D., The Sun, weather, and climate: A present-day view of the problem (review), Geomagn. Aeron. (Engl. Transl.), 2000, vol. 40, no. 5, pp. 545–555.

    Google Scholar 

  3. Comiso, J.C., Parkinson, C.L., Gersten, R., and Stock, L., Accelerated decline in the arctic sea ice cover, Geophys. Res. Lett., 2008, vol. 35, L01703. doi 10.1029/2007GL031972

    Article  Google Scholar 

  4. Dergachev, V.A. and Raspopov, O.M., Reconstruction of the Earth’s surface temperature based on data of deep boreholes, global warming in the last millennium, and long-term solar cyclicity. Part 1. Experimental data, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 3, pp. 383–392.

    Google Scholar 

  5. Dickson, R.R., Meincke, J., Malmberg, S.A., and Lee, A.J., The “great salinity anomaly” in the Northern North Atlantic 1968–1982, Prog. Oceanogr., 1988, vol. 20, no. 2, pp. 103–151.

    Article  Google Scholar 

  6. Eddy, J.A., The maunder minimum, Science, 1976, vol. 192, no. 4245, pp. 1189–1202.

    Article  Google Scholar 

  7. Gray, L.J., Beer, J., Geller, M., et al., Solar influences on climate, Rev. Geophys., 2010, vol. 48, RG4001. doi 10.1029/2009RG000282

    Article  Google Scholar 

  8. Hurrell, J.W., Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 1995, vol. 269, no. 5224, pp. 676–679.

    Article  Google Scholar 

  9. Kalnay, E., Kanamitsu, M., Kistler, R., et al., The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 1996, vol. 77, no. 3, pp. 437–471.

    Article  Google Scholar 

  10. Kernthaler, S.C., Toumi, R., and Haigh, J.D., Some doubts concerning a link between cosmic ray fluxes and global cloudiness, Geophys. Res. Lett., 1999, vol. 26, no. 7, pp. 863–865.

    Article  Google Scholar 

  11. Krivolutsky, A.A., Cherepanova, L.A., and Dement’eva, A.V., Solar cycle influence on troposphere and middle atmosphere via ozone layer in the presence of planetary waves: Simulation with ARM, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 10, pp. 8298–8306.

    Article  Google Scholar 

  12. Marsh, N. and Svensmark, H., Solar influence on Earth’s climate, Space Sci. Rev., 2003, vol. 107, no. 1, pp. 317–325.

    Article  Google Scholar 

  13. McCormack, B., Seliga, T., and Roberts, W., Solar–Terrestrial Influences on Weather and Climate, Dordrecht: Springer, 1982; Moscow: Mir, 1982.

    Google Scholar 

  14. Mitchel, D.M., Misios, S., Gray, L.J., Tourpali, K., Matthes, K., Hood, L., Schmidt, H., Chiodo, G., Thieblemont, R., Rozanov, E., Shindel, D., and Krivolutsky, A., Solar signals in CMIM-5 simulations: The stratospheric pathway, Q. J. R. Meteorol. Soc., 2015, vol. 141, no. 691, pp. 2390–2403.

    Article  Google Scholar 

  15. Mokhov, I.I. and Smirnov, D.A., Diagnostics of a cause–effect relation between solar activity and the Earth’s global surface temperature, Izv.: Atmos. Ocean. Phys., 2008, vol. 44, no. 3, pp. 263–272.

    Google Scholar 

  16. Mufti, S. and Shah, G.N., Solar–geomagnetic activity influence on Earth’s climate, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 13, pp. 1607–1615.

    Article  Google Scholar 

  17. Mustel’, E.R., Mulyukova, N.B., and Chertoprud, V.E., On the solar–tropospheric effect in the Earth’s northern and southern hemispheres, Nauchnye Inform., 1990, no. 68, pp. 99–117.

    Google Scholar 

  18. Roy, I. and Haigh, J.D., Solar cycle signals in sea level pressure and sea surface temperature, Atmos. Chem. Phys., 2010, vol. 10, no. 6, pp. 3147–3153.

    Article  Google Scholar 

  19. Rubtsova, O.A., Kovalenko, V.A., and Molodykh, S.I., Manifestation of isolated heliogeophysical perturbations in the high-latitude troposphere, Opt. Atmos. Okeana, 2008, vol. 21, no. 6, pp. 463–466.

    Google Scholar 

  20. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press, 2013.

    Google Scholar 

  21. Svensmark, H. and Friis-Christensen, E., Variations of cosmic ray flux and global cloud coverage: A missing link in solar–climate relationship, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, no. 11, pp. 1225–1232.

    Article  Google Scholar 

  22. Valev, D., Statistical relationships between the surface air temperature anomalies and the solar and geomagnetic activity indices, Phys. Chem. Earth, 2006, vol. 31, nos. 1–3, pp. 109–112.

    Article  Google Scholar 

  23. Zherebtsov, G.A., Kovalenko, V.A., and Molodykh, S.I., Radiation budget of the atmosphere and climatic manifestations of solar variations, Opt. Atmos. Okeana, 2004, vol. 17, no. 12, pp. 891–903.

    Google Scholar 

  24. Zherebtsov, G.A., Kovalenko, V.A., Molodykh, S.I., and Rubtsova, O.A., Model of solar activity action on the climatic characteristics of the Earth’s troposphere, Opt. Atmos. Okeana, 2005a, vol. 18, no. 12, pp. 936–944.

    Google Scholar 

  25. Zherebtsov, G.A., Kovalenko, V.A., and Molodykh, S.I., The physical mechanism of the solar variability influence on electrical and climatic characteristics of the troposphere, Adv. Space Res., 2005b, vol. 35, no. 8, pp. 1472–1479.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Kovalenko.

Additional information

Original Russian Text © G.A. Zherebtsov, V.A. Kovalenko, K.E. Kirichenko, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 6, pp. 687–695.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zherebtsov, G.A., Kovalenko, V.A. & Kirichenko, K.E. The role of solar activity in observed climate changes in the 20th century. Geomagn. Aeron. 57, 637–644 (2017). https://doi.org/10.1134/S0016793217060147

Download citation